Improved characterization of aerosol properties in the vicinity of clouds is important for better understanding two critical aspects of climate: aerosol–cloud interactions and the direct radiative effect of aerosols. Satellite measurements have provided important insights into aerosol properties near clouds, but also suggested that the observations can be affected by 3-D radiative processes and instrument blurring not considered in current data interpretation methods. This study examines systematic cloud-related changes in particle properties and radiation fields that influence satellite measurements of aerosols in the vicinity of low-level maritime clouds. For this, the paper presents a statistical analysis of a yearlong global dataset of co-located MODIS and CALIOP observations and theoretical simulations. The results reveal that CALIOP-observed aerosol particle size and optical thickness, and MODIS-observed solar reflectance increase systematically in a wide transition zone around clouds. It is estimated that near-cloud changes in particle populations – including both aerosols and undetected cloud particles – are responsible for roughly two thirds of the observed increase in 0.55 µm MODIS reflectance. The results also indicate that 3-D radiative processes significantly contribute to near-cloud reflectance enhancements, while instrument blurring contributes significantly only within 1 km from clouds and then quickly diminishes with distance from clouds.
Multi-satellite aerosol observations in the vicinity of clouds
Várnai, T., A. Marshak, and W. Yang (2013), Multi-satellite aerosol observations in the vicinity of clouds, Atmos. Chem. Phys., 13, 3899-3908, doi:10.5194/acp-13-3899-2013.
Abstract
PDF of Publication
Download from publisher's website
Research Program
Radiation Science Program (RSP)
Mission
CALIPSO
Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.