Organization
NASA Langley Research Center
Email
Business Address
Aeronautics System Engineering Branch
Hampton, VA
United States
Co-Authored Publications
-
Sun-Mack, S., et al. (2024), Identification of ice-over-water multilayer clouds using multispectral satellite data in an artificial neural network, Atmos. Meas. Tech., 17, 3323-3346, doi:10.5194/amt-17-3323-2024.
-
Minnis, P., et al. (2023), VIIRS Edition 1 Cloud Properties for CERES, Part 1: Algorithm Adjustments and Results, Algorithm Adjustments and Results. Remote Sens., 15, 578, doi:10.3390/rs15030578.
-
Minnis, P., et al. (2021), CERES MODIS Cloud Product Retrievals for Edition 4—Part I: Algorithm Changes, IEEE Trans. Geosci. Remote Sens., 59, 2744-2780, doi:10.1109/TGRS.2020.3008866.
-
Yost, C., et al. (2021), CERES MODIS Cloud Product Retrievals for Edition 4—Part II: Comparisons to CloudSat and CALIPSO, IEEE Trans. Geosci. Remote Sens., 59, 3695-3724, doi:10.1109/TGRS.2020.3015155.
-
Minnis, P., et al. (2019), Advances in neural network detection and retrieval of multilayer clouds for CERES using multispectral satellite data, Proc. SPIE Remote Sens. Clouds and Atmospheric., XXIV, 1-12, doi:10.1117/12.2532931.
-
Sun-Mack, S., et al. (2019), Calibration Changes to Terra MODIS Collection-5 Radiances for CERES Edition 4 Cloud Retrievals, IEEE Trans. Geosci. Remote Sens., 1-17, doi:10.1109/TGRS.2018.2829902.
-
Trepte, Q.Z., et al. (2019), Global Cloud Detection for CERES Edition 4 Using Terra and Aqua MODIS Data, IEEE Trans. Geosci. Remote Sens., 57, 9410-9449, doi:10.1109/TGRS.2019.2926620.
-
Ham, S., et al. (2017), Cloud occurrences and cloud radiative effects (CREs) from CERES-CALIPSO-CloudSat-MODIS (CCCM) and CloudSat radar-lidar (RL) products, J. Geophys. Res., 122, doi:10.1002/2017JD026725.
-
Sun-Mack, S., et al. (2017), Detection of Single and Multilayer Clouds in an Artificial Neural Network Approach. Proc. SPIE Conf. Remote Sens. Clouds and the Atmos. XXII, Warsaw, Poland, 10424-7, 11-14, doi:10.1117/12.2277397.
-
Sun-Mack, S., et al. (2014), Regional Apparent Boundary Layer Lapse Rates Determined from CALIPSO and MODIS Data for Cloud-Height Determination, J. Appl. Meteor. Climat., 53, 990-1011, doi:10.1175/JAMC-D-13-081.1.
-
Kato, S., et al. (2011), Detection of Atmospheric Changes in Spatially and Temporally Averaged Infrared Spectra Observed from Space, J. Climate, 24, 6392-6407, doi:10.1175/JCLI-D-10-05005.1.
-
Kato, S., et al. (2011), Improvements of top‐of‐atmosphere and surface irradiance computations with CALIPSO‐, CloudSat‐, and MODIS‐derived cloud and aerosol properties, J. Geophys. Res., 116, D19209, doi:10.1029/2011JD016050.
-
Minnis, P., et al. (2011), CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data, Part II: Examples of average results and comparisons with other data, IEEE Trans. Geosci. Remote Sens., 49, 11-2892).
-
Minnis, P., et al. (2011), CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data, Part I: Algorithms, IEEE Trans. Geosci. Remote Sens., 49, 11-2892).
-
Kato, S., et al. (2010), Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles, J. Geophys. Res., 115, D00H28, doi:10.1029/2009JD012277.
-
Dong, X., et al. (2008), Comparison of CERES-MODIS stratus cloud properties with groundbased measurements at the DOE ARM Southern Great Plains site, J. Geophys. Res., 113, D03204, doi:10.1029/2007JD008438.
-
Minnis, P., et al. (2008), Cloud Detection in Nonpolar Regions for CERES Using TRMM VIRS and Terra and Aqua MODIS Data, IEEE Trans. Geosci. Remote Sens., 46, 3857-3884, doi:10.1109/TGRS.2008.2001351.
-
Minnis, P., et al. (2008), Estimating the top altitude of optically thick ice clouds from thermal infrared satellite observations using CALIPSO data, Geophys. Res. Lett., 35, L12801, doi:10.1029/2008GL033947.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.