Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.


Observations of heterogeneous reactions between Asian pollution and mineral...

McNaughton, C. S., A. Clarke, V. N. Kapustin, Y. Shinozuka, S. Howell, B. E. Anderson, E. Winstead, J. Dibb, E. Scheuer, R. C. Cohen, P. J. Wooldridge, A. Perring, L. G. Huey, S. Kim, J. Jimenez-Palacios, E. J. Dunlea, P. F. DeCarlo, P. Wennberg, J. D. Crounse, A. Weinheimer, and F. Flocke (2009), Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B, Atmos. Chem. Phys., 9, 8283-8308, doi:10.5194/acp-9-8283-2009.

In-situ airborne measurements of trace gases, aerosol size distributions, chemistry and optical properties were conducted over Mexico and the Eastern North Pacific during MILAGRO and INTEX-B. Heterogeneous reactions between secondary aerosol precursor gases and mineral dust lead to sequestration of sulfur, nitrogen and chlorine in the supermicrometer particulate size range.

Simultaneous measurements of aerosol size distributions and weak-acid soluble calcium result in an estimate of 11 wt% of CaCO3 for Asian dust. During transport across the North Pacific, ∼5–30% of the CaCO3 is converted to CaSO4 or Ca(NO3 )2 with an additional ∼4% consumed through reactions with HCl. The 1996 to 2008 record from the Mauna Loa Observatory confirm these findings, indicating that, on average, 19% of the CaCO3 has reacted to form CaSO4 and 7% has reacted to form Ca(NO3 )2 and ∼2% has reacted with HCl. In the nitrogen-oxide rich boundary layer near Mexico City up to 30% of the CaCO3 has reacted to form Ca(NO3 )2 while an additional 8% has reacted with HCl.

These heterogeneous reactions can result in a ∼3% increase in dust solubility which has an insignificant effect on their optical properties compared to their variability in-situ. However, competition between supermicrometer dust and submicrometer primary aerosol for condensing secondary aerosol species led to a 25% smaller number median diameter for the accumulation mode aerosol. A 10–25% reduction of accumulation mode number median diameter results in a 30–70% reduction in submicrometer light scattering at relative humidities in the 80–95% range. At 80% RH submicrometer light scattering is only reduced ∼3% due to a higher mass fraction of hydrophobic refractory components in the dust-affected accumulation mode aerosol. Thus reducing the geometric mean diameter of the submicrometer aerosol has a much larger effect on aerosol optical properties than changes to the hygroscopic:hydrophobic mass fractions of the accumulation mode aerosol.

In the presence of dust, nitric acid concentrations are reduced to <50% of total nitrate (nitric acid plus particulate nitrate). NOy as a fraction of total nitrogen (NOy plus particulate nitrate), is reduced from >85% to 60–80% in the presence of dust. These observations support previous model studies which predict irreversible sequestration of reactive nitrogen species through heterogeneous reactions with mineral dust during long-range transport.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Tropospheric Composition Program (TCP)