Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Linear trends and closures of 10- year observations of AIRS stratospheric...

Pan, F., X. Huang, L. Strow, and H. Guo (2015), Linear trends and closures of 10- year observations of AIRS stratospheric channels, J. Climate, doi:10.1175/JCLID-15-0418.1.
Abstract: 

The AIRS (Atmospheric Infrared Sounder) Level-1b radiances have been shown to be well calibrated (~0.3K or higher) and have little secular drift (~4mK/year) since its operation started in September 2002. We study the linear trends of 10 years (2003-2012) of AIRS global-mean radiances in the CO2 ν2 band that are sensitive to emissions from the stratosphere (stratospheric channels). AIRS lower-stratospheric channels have a cooling trend of no more than 0.23K/decade while its middle-stratospheric channels consistently show a statistically significant cooling trend as large as 0.58K/decade. The 95% confidence interval for the trend is ~±0.20K/decade. Two sets of synthetic AIRS radiances are computed using the PCRTM (Principle Component-based Radiative Transfer Model), one based on a free-running GFDL AM3 model over the same period and one based on ERA-interim reanalysis. The GFDL AM3 simulations overestimate the cooling trends in the middle-upper-stratospheric channels while slightly underestimate in the lower-stratospheric channels. The synthetic radiances based on ERA-interim reanalysis, on the opposite, have statistically significant positive trends at virtually all stratospheric channels. This confirms the challenge to GCM modeling and reanalysis community for a better simulation or assimilation of the stratospheric climate. We show that the linear trends in AIRS radiances can be reproduced to a large extent by the spectral radiative kernel technique and the trends from the AIRS L2 temperature retrievals and from the change of CO2. This suggests a closure between AIRS L1 radiances and L2 retrievals and potential merit of AIRS data in the studies of stratosphere changes.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Radiation Science Program (RSP)
Mission: 
CLARREO