Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.


Cite This: Environ. Sci. Technol. 2019, 53, 5176−5186 pubs.acs.org/est...

Chen, Y., L. Xu, T. Humphry, A. P. S. Hettiyadura, J. Ovadnevaite, S. Huang, L. Poulain, J. C. Schroder, Campuzano Jost, J. Jimenez-Palacios, H. Herrmann, C. O’Dowd, E. A. Stone, and N. L. Ng (2019), Cite This: Environ. Sci. Technol. 2019, 53, 5176−5186 pubs.acs.org/est Response of the Aerodyne Aerosol Mass Spectrometer to Inorganic Sulfates and Organosulfur Compounds: Applications in Field and Laboratory Measurements, Environ. Sci. Technol., doi:10.1021/acs.est.9b00884.

Organosulfur compounds are important components of secondary organic aerosols (SOA). While the Aerodyne high-resolution time-of-flight aerosol mass spectrometer (AMS) has been extensively used in aerosol studies, the response of the AMS to organosulfur compounds is not well-understood. Here, we investigated the fragmentation patterns of organosulfurs and inorganic sulfates in the AMS, developed a method to deconvolve total sulfate into components of inorganic and organic origins, and applied this method in both laboratory and field measurements. Apportionment results from laboratory isoprene photooxidation experiment showed that with inorganic sulfate seed, sulfate functionality of organic origins can contribute ∼7% of SOA mass at peak growth. Results from measurements in the Southeastern U.S. showed that 4% of measured sulfate is from organosulfur compounds. Methanesulfonic acid was estimated for measurements in the coastal and remote marine boundary layer. We explored the application of this method to unit mass-resolution data, where it performed less well due to interferences. Our apportionment results demonstrate that organosulfur compounds could be a non-negligible source of sulfate fragments in

AMSlaboratoryandfielddataset s. AreevaluationofpreviousAMSmeasurementsoverthefullrangeofatmosphericconditions using this method could provide a global estimate/constraint on the contribution of organosulfur compounds.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Tropospheric Composition Program (TCP)