A new photolysis laser-induced fluorescence instrument for the detection of H2O and HDO in the lower stratosphere

St. Clair, J.M., T.F. Hanisco, E. Weinstock, E.J. Moyer, D. Sayres, and J.G. Anderson (2008), A new photolysis laser-induced fluorescence instrument for the detection of H2O and HDO in the lower stratosphere, Review Of Scientific Instruments, 79, 64101, doi:10.1063/1.2940221.
Abstract

We present a new instrument, Hoxotope, for the in situ measurement of H2O and its heavy deuterium isotopologue ͑HDO͒ in the upper troposphere and lower stratosphere aboard the NASA WB-57. Sensitive measurements of ␦D are accomplished through the vacuum UV photolysis of water followed by laser-induced fluorescence detection of the resultant OH and OD photofragments. The photolysis laser-induced fluorescence technique can obtain S / N Ͼ 20 for 1 ppbv HDO and S / N Ͼ 30 for 5 ppmv H2O for 10 s data, providing the sensitivity required for ␦D measurements in the tropopause region. The technique responds rapidly to changing water concentrations due to its inherently small sampling volume, augmented by steps taken to minimize water uptake on instrument plumbing. Data from the summer 2005 Aura Validation Experiment Water Isotope Intercomparison Flights ͑AVE-WIIF͒ out of Houston, TX show agreement for H2O between Hoxotope and the Harvard water vapor instrument and for HDO between Hoxotope and the Harvard ICOS water isotope instrument, to within stated instrument uncertainties. The successful intercomparison validates Hoxotope as a credible source of ␦D data in the upper troposphere and

PDF of Publication
Download from publisher's website
Research Program
Upper Atmosphere Research Program (UARP)
Mission
AVE Houston 2

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.