Warning message

Member access has been temporarily disabled. Please try again later.
The ASHOE-MAESA website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

A large source of cloud condensation nuclei from new particle formation in the...

Williamson, C., A. Straus, D. Axisa, K. R. Bilsback, T. P. Bui, Campuzano Jost, M. Dollner, K. Froyd, A. Hodshire, J. Jimenez-Palacios, J. K. Kodros, G. Luo, D. Murphy, B. Nault, E. Ray, B. Weinzierl, J. Wilson, F. Yu, P. Yu, J. Pierce, and C. Brock (2019), A large source of cloud condensation nuclei from new particle formation in the tropics, Nature, 574, 399-403, doi:10.1038/s41586-019-1638-9.
Abstract: 

Cloud condensation nuclei (CCN) can affect cloud properties and therefore Earth’s radiative balance1–3. New particle formation (NPF) from condensable vapours in the free troposphere has been suggested to contribute to CCN, especially in remote, pristine atmospheric regions4, but direct evidence is sparse, and the magnitude of this contribution is uncertain5–7. Here we use in situ aircraft measurements of vertical profiles of aerosol size distributions to present a globalscale survey of NPF occurrence. We observe intense NPF at high altitudes in tropical convective regions over both Pacific and Atlantic oceans. Together with the results of chemical-transport models, our findings indicate that NPF persists at all longitudes as a global-scale band in the tropical upper troposphere, covering about 40 per cent of Earth’s surface. Furthermore, we find that this NPF in the tropical upper troposphere is a globally important source of CCN in the lower troposphere, where CCN can affect cloud properties. Our findings suggest that the production of CCN as new particles descend towards the surface is not adequately captured in global models, which tend to underestimate both the magnitude of tropical upper tropospheric NPF and the subsequent growth of new particles to CCN sizes.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Tropospheric Composition Program (TCP)
Mission: 
ATom