Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.


Microwave Limb Sounder (MLS) observations of biomass burning products in the...

Pumphrey, H., M. Schwartz, M. Santee, P. Kablick, M. Fromm, and N. Livesey (2021), Microwave Limb Sounder (MLS) observations of biomass burning products in the stratosphere from Canadian forest fires in August 2017, Atmos. Chem. Phys., 21, 16645-16659, doi:10.5194/acp-21-16645-2021.

Forest fires in British Columbia in August 2017 caused a pyrocumulonimbus event that injected a polluted air mass into the lower stratosphere. The Microwave Limb Sounder (MLS) on the Aura satellite first observed the polluted air mass on 14 August 2017 and continued to observe it for 60 d (100 d in water vapour). We estimate the mass of CO injected into the stratosphere to be 2400 Gg. Events in which a fire injects its burning products directly into the stratosphere are rare: this is the third of four such events in the 16 years since the launch of Aura, the second largest of the four events, and the only one in the Northern Hemisphere. The other three events occurred in Australia in December 2006, February 2009 and from December 2019 to January 2020. Unlike the 2006 and 2009 events, but like the 2019–2020 event, the polluted air mass described here had a clearly elevated water vapour content: between 2.5 and 5 times greater than that in the surrounding atmosphere. We describe the evolution of the polluted air mass, showing that it rose to an altitude of about 24 km (31 hPa) and divided into several identifiable parts. In addition to CO and H2 O, we observe enhanced amounts of HCN, CH3 CN, CH3 Cl and CH3 OH with mixing ratios in the range to be expected from a variety of measurements in other biomass burning plumes. We use back trajectories and plume-dispersion modelling to demonstrate that the pollutants observed by MLS originated in the British Columbia fires, the likeliest source being at 53.2◦ N, 121.8◦ W at 05:20 UTC on 13 August 2017.

PDF of Publication: 
Download from publisher's website.
Aura MLS