Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit espo.nasa.gov for information about our current projects.

 

Evaluating the Height of Biomass Burning Smoke Aerosols Retrieved from...

The core information for this publication's citation.: 
Lee, J., N. C. Hsu, C. Bettenhausen, A. M. Sayer, C. J. Seftor, M. Jeong, S. Tsay, J. Welton, S. Wang, and W. Chen (2016), Evaluating the Height of Biomass Burning Smoke Aerosols Retrieved from Synergistic Use of Multiple Satellite Sensors over Southeast Asia, Aerosol and Air Quality Research, 16, 2831-2842, doi:10.4209/aaqr.2015.08.0506.
Abstract: 

This study evaluates the height of biomass burning smoke aerosols retrieved from a combined use of Visible Infrared Imaging Radiometer Suite (VIIRS), Ozone Mapping and Profiler Suite (OMPS), and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. The retrieved heights are compared against spaceborne and ground-based lidar measurements during the peak biomass burning season (March and April) over Southeast Asia from 2013 to 2015. Based on the comparison against CALIOP, a quality assurance (QA) procedure is developed. It is found that 74% (81–84%) of the retrieved heights fall within 1 km of CALIOP observations for unfiltered (QA-filtered) data, with root-mean-square error (RMSE) of 1.1 km (0.8–1.0 km). Eliminating the requirement for CALIOP observations from the retrieval process significantly increases the temporal coverage with only a slight decrease in the retrieval accuracy; for best QA data, 64% of data fall within 1 km of CALIOP observations with RMSE of 1.1 km. When compared with Micro-Pulse Lidar Network

PDF of Publication: 
Download from publisher's website.
Research Program: 
Atmospheric Composition
Radiation Science Program (RSP)
Tropospheric Composition Program (TCP)