The ARCTAS website will be undergoing a major upgrade beginning Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Please plan to complete any critical activities before or after this time.

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Combined neural network/Phillips–Tikhonov approach to aerosol retrievals over...

Di Noia, A., Otto Hasekamp, L. Wu, B. van Diedenhoven, B. Cairns, and J. Yorks (2017), Combined neural network/Phillips–Tikhonov approach to aerosol retrievals over land from the NASA Research Scanning Polarimeter, Atmos. Meas. Tech., 10, 4235-4252, doi:10.5194/amt-10-4235-2017.
Abstract: 

In this paper, an algorithm for the retrieval of aerosol and land surface properties from airborne spectropolarimetric measurements – combining neural networks and an iterative scheme based on Phillips–Tikhonov regularization – is described. The algorithm – which is an extension of a scheme previously designed for ground-based retrievals – is applied to measurements from the Research Scanning Polarimeter (RSP) on board the NASA ER-2 aircraft. A neural network, trained on a large data set of synthetic measurements, is applied to perform aerosol retrievals from real RSP data, and the neural network retrievals are subsequently used as a first guess for the Phillips–Tikhonov retrieval. The resulting algorithm appears capable of accurately retrieving aerosol optical thickness, fine-mode effective radius and aerosol layer height from RSP data. Among the advantages of using a neural network as initial guess for an iterative algorithm are a decrease in processing time and an increase in the number of converging retrievals.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Radiation Science Program (RSP)