Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.


CloudSat Studies of Stratiform Precipitation Systems Observed in the Vicinity...

Matrosov, S. (2010), CloudSat Studies of Stratiform Precipitation Systems Observed in the Vicinity of the Southern Great Plains Atmospheric Radiation Measurement Site, J. Appl. Meteor. Climat., 49, 1756-1765, doi:10.1175/2010JAMC2444.1.

The spaceborne W-band (94 GHz) radar on board the CloudSat polar-orbiting satellite offers new opportunities for retrieving parameters of precipitating cloud systems. CloudSat measurements can resolve the vertical cross sections of such systems. The radar brightband features, which are commonly present when observing stratiform precipitating systems, allow the vertical separation of the ice, mixed, and liquid precipitating hydrometeor layers. In this study, the CloudSat data are used to simultaneously retrieve ice water path (IWP) values for ice layers of precipitating systems using absolute radar reflectivity measurements and mean rainfall rates Rm in the liquid hydrometeor layers using the attenuation-based reflectivity gradient method. The retrievals were performed for precipitating events observed in the vicinity of the Southern Great Plains (SGP) Atmospheric Radiation Measurement Program (ARM) Climate Research Facility. The retrieval results indicated that IWP values in stratiform precipitating systems vary from a few hundreds up to about 10 thousands of grams per meter squared, and the mean rain rates were in a general range between 0.5 and about 12 mm h21. On average, mean rainfall increases with an increase in ice mass observed above the melting layer; the corresponding mean correlation coefficient is about 0.35, although events with higher correlation as well as those with no appreciable correlation were observed. Horizontal advection, wind shear, and vertical air motions might be some of the reasons for decorrelation between IWP and Rm retrieved for the same vertical atmospheric column. A mean statistical relation between IWP and Rm derived from CloudSat retrievals is in good agreement with the data obtained from multiwavelength ground-based cloud radar measurements at the SGP site.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Atmospheric Dynamics and Precipitation Program (ADP)