Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit espo.nasa.gov for information about our current projects.

 

Changes in the structure and propagation of the MJO with increasing CO2 

Adames, A. F., D. Kim, A. H. Sobel, A. Del Genio, and J. Wu (2017), Changes in the structure and propagation of the MJO with increasing CO2 , J. Adv. Modeling Earth Syst., 9, doi:10.1002/2017MS000913.
Abstract: 

Changes in the Madden-Julian Oscillation (MJO) with increasing CO2 concentrations are examined using the Goddard Institute for Space Studies Global Climate Model (GCM). Four simulations performed with fixed CO2 concentrations of 0.5, 1, 2, and 4 times preindustrial levels using the GCM coupled with a mixed layer ocean model are analyzed in terms of the basic state, rainfall, moisture and zonal wind variability, and the structure and propagation of the MJO. The GCM simulates basic state changes associated with increasing CO2 that are consistent with results from earlier studies: column water vapor increases at 7.1% K21, precipitation also increases but at a lower rate (3% K21), and column relative humidity shows little change. Moisture and rainfall variability intensify with warming while zonal wind variability shows little change. Total moisture and rainfall variability increases at a rate this is similar to that of the mean state change. The intensification is faster in the MJO-related anomalies than in the total anomalies, though the ratio of the MJO band variability to its westward counterpart increases at a much slower rate. On the basis of linear regression analysis and space-time spectral analysis, it is found that the MJO exhibits faster eastward propagation, faster westward energy dispersion, a larger zonal scale, and deeper vertical structure in warmer climates. Plain Language Summary Changes in the Madden-Julian Oscillation (MJO) with increasing carbon dioxide (CO2) concentrations are examined using the Goddard Institute for Space Studies Global Climate Model (GCM). Four simulations performed with varying amounts of CO2 concentrations. We analyze the climatology and variability in rainfall and water vapor, and the structure and propagation of the MJO. The GCM simulates basic state changes associated with increasing CO2 that are consistent with results from earlier studies: column water vapor increases at ~7.1 % per degree warming, while precipitation also increases but at a lower rate, and column relative humidity shows little change. Moisture and rainfall variability intensify with warming. Total moisture and rainfall variability increases at a rate that is similar to that of the mean state change, and it is faster at the intraseasonal timescale. It is also found that the MJO exhibits faster eastward propagation, a larger zonal scale and deeper vertical structure in warmer climates. C 2017. The Authors. V This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Modeling Analysis and Prediction Program (MAP)