Organization
University of Michigan
Email
Business Address
Ann Arbor, MI
United States
Co-Authored Publications
-
Bian, H., et al. (2024), Observationally constrained analysis of sulfur cycle in the marine atmosphere with NASA ATom measurements and AeroCom model simulations, Atmos. Chem. Phys., doi:10.5194/acp-24-1717-2024.
-
Bian, H., et al. (2023), Observationally constrained analysis of sulfur cycle in the marine atmosphere with NASA ATom measurements and AeroCom model simulations(submitted), doi:10.5194/egusphere-2023-1966.
-
Li, J.1.✉., et al. (2022), in the climate system REVIEwS, Nature, doi:10.1038/scattering.
-
Brasseur, G.P., et al. (2017), Impact of Aviation: FAA's Aviation Climate Change Research Initiative (ACCRI) Phase II, Bull. Am. Meteorol. Soc., 98, 561-583, doi:10.1175/BAMS-D-13-00089.1.
-
Kahn, R., et al. (2017), SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses, Bull. Am. Meteoro. Soc., 2215-2228, doi:10.1175/BAMS-D-16-0003.1.
-
Sand, M., et al. (2017), Aerosols at the poles: an AeroCom Phase II multi-model evaluation, Atmos. Chem. Phys., 17, 12197-12218, doi:10.5194/acp-17-12197-2017.
-
Seinfeld, J.H., et al. (2016), COLLOQUIUM INTRODUCTION Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system, Proc. Natl. Acad. Sci., 113, doi:10.1073/pnas.1514043113.
-
Jiao, C., et al. (2014), An AeroCom assessment of black carbon in Arctic snow and sea ice, Atmos. Chem. Phys., 14, 2399-2417, doi:10.5194/acp-14-2399-2014.
-
Komurcu, M., et al. (2014), Intercomparison of the cloud water phase among global climate models, J. Geophys. Res., 119, 3372-3400, doi:10.1002/2013JD021119.
-
Samset, B.H., et al. (2014), Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations, Atmos. Chem. Phys., 14, 12465-12477, doi:10.5194/acp-14-12465-2014.
-
Tsigaridis, K., et al. (2014), The AeroCom evaluation and intercomparison of organic aerosol in global models, Atmos. Chem. Phys., 14, 10845-10895, doi:10.5194/acp-14-10845-2014.
-
Myhre, G., et al. (2013), Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13, 1853-1877, doi:10.5194/acp-13-1853-2013.
-
Samset, B.H., et al. (2013), Black carbon vertical profiles strongly affect its radiative forcing uncertainty, Atmos. Chem. Phys., 13, 2423-2434, doi:10.5194/acp-13-2423-2013.
-
Wang, M., et al. (2012), Constraining cloud lifetime effects of aerosols using A-Train satellite observations, Geophys. Res. Lett., 39, L15709, doi:10.1029/2012GL052204.
-
Yi, B., et al. (2012), Simulation of the global contrail radiative forcing: A sensitivity analysis, Geophys. Res. Lett., 39, L00F03, doi:10.1029/2012GL054042.
-
Huneeus, N., et al. (2011), Global dust model intercomparison in AeroCom phase I, Atmos. Chem. Phys., 11, 7781-7816, doi:10.5194/acp-11-7781-2011.
-
Su, H., et al. (2011), Observed Increase of TTL Temperature and Water Vapor in Polluted Clouds over Asia, J. Climate, 24, 2728-2736, doi:10.1175/2010JCLI3749.1.
-
Bian, H., et al. (2009), Sensitivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity, Atmos. Chem. Phys., 9, 2375-2386, doi:10.5194/acp-9-2375-2009.
-
Koch, D., et al. (2009), Evaluation of black carbon estimations in global aerosol models, Atmos. Chem. Phys., 9, 9001-9026, doi:10.5194/acp-9-9001-2009.
-
Liu, X., et al. (2007), Uncertainties in global aerosol simulations: Assessment using three meteorological data sets, J. Geophys. Res., 112, D11212, doi:10.1029/2006JD008216.
-
Neu, J.L., et al. (2007), Global atmospheric chemistry: Integrating over fractional cloud cover, J. Geophys. Res., 112, D11306, doi:10.1029/2006JD008007.
-
Textor, C., et al. (2007), The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment, Atmos. Chem. Phys., 7, 4489-4501, doi:10.5194/acp-7-4489-2007.
-
Bates, T., et al. (2006), Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling, Atmos. Chem. Phys., 6, 1657-1732, doi:10.5194/acp-6-1657-2006.
-
Kinne, S., et al. (2006), An AeroCom initial assessment – optical properties in aerosol component modules of global models, Atmos. Chem. Phys., 6, 1815-1834, doi:10.5194/acp-6-1815-2006.
-
Textor, C., et al. (2006), Analysis and quantification of the diversities of aerosol life cycles within AeroCom, Atmos. Chem. Phys., 6, 1777-1813, doi:10.5194/acp-6-1777-2006.
-
Diner, D., et al. (2004), Understanding Aerosols Paragon: An Integrated Approach for Characterizing Aerosol Climate Impacts and Environmental Interactions, Bull. Am. Meteorol. Soc., 1491, doi:10.1175/BAMS-85-10-1491.
-
Kinne, S., et al. (2003), Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data, J. Geophys. Res., 108, 4634, doi:10.1029/2001JD001253.
-
Menon, S., et al. (2003), Evaluating aerosol/cloud/radiation process parameterizations with single-column models and Second Aerosol Characterization Experiment (ACE-2) cloudy column observations, J. Geophys. Res., 108, 4762, doi:10.1029/2003JD003902.
-
Olson, J., et al. (1997), Results from theIPCC photchemical model intercomparison (PhotoComp), J. Geophys. Res., 102, 5979-5991.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.