Warning message

Member access has been temporarily disabled. Please try again later.
The AASE website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Usage of differential absorption method in the thermal IR: a case study of...

Chen, X. H., and X. Huang (2014), Usage of differential absorption method in the thermal IR: a case study of quick estimate of clear-sky column water vapor, J. Quant. Spectrosc. Radiat. Transfer, 140, 99-106, doi:10.1016/j.jqsrt.2014.02.019.
Abstract: 

The concept of differential absorption has been widely used in UV and shortwave remote sensing. This study explores how to extend such concept to the thermal-IR for fast estimation of the total column water vapor (CWV) from clear-sky IR radiances. Using Atmospheric Infrared Sounder (AIRS) radiances as a case study, double difference of radiances at two pairs of pre-selected AIRS channels can be used to suppress the influence of continuum absorption and to highlight contrasts due to weak water vapor line absorptions. To take emission into account, another two AIRS channels are used as surrogates of surface temperature and lapse rate in the lower troposphere. As a result, a three-dimensional look-up table (LUT) can be constructed based on training data sets. Such LUT enables us a fast estimate of CWV directly from the spectral radiances without any a prior information or formal retrieval. The performance of the method is tested using synthetic AIRS radiances based on reanalysis as well as actual sounding profiles. It is also tested against AIRS L2 cloud-cleared radiances and CWV retrievals. The comparisons show that the mean bias of this method is within 7 0.07 cm and the root-mean-square fractional error is about 33%.

PDF of Publication: 
Download from publisher's website.