Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.


Statistical Analyses of Satellite Cloud Object Data from CERES. Part V:...

Eitzen, Z. A., K. Xu, and T. Wong (2008), Statistical Analyses of Satellite Cloud Object Data from CERES. Part V: Relationships between Physical Properties of Marine Boundary Layer Clouds, J. Climate, 21, 6668-6688, doi:10.1175/2008JCLI2307.1.

Relationships between physical properties are studied for three types of marine boundary layer cloud objects identified with the Clouds and the Earth’s Radiant Energy System (CERES) footprint data from the Tropical Rainfall Measuring Mission satellite between 30°S and 30°N. Each cloud object is a contiguous region of CERES footprints that have cloud-top heights below 3 km, and cloud fractions of 99%–100% (overcast type), 40%–99% (stratocumulus type), or 10%–40% (shallow cumulus type). These cloud fractions represent the fraction of ϳ2 km ϫ 2 km Visible/Infrared Scanner pixels that are cloudy within each ϳ10 km ϫ 10 km footprint. The cloud objects have effective diameters that are greater than 300 km for the overcast and stratocumulus types, and greater than 150 km for the shallow cumulus type. The Spearman rank correlation coefficient is calculated between many microphysical/optical [effective radius (re), cloud optical depth (␶), albedo, liquid water path, and shortwave cloud radiative forcing (SW CRF)] and macrophysical [outgoing longwave radiation (OLR), cloud fraction, cloud-top temperature, longwave cloud radiative forcing (LW CRF), and sea surface temperature (SST)] properties for each of the three cloud object types. When both physical properties are of the same category (microphysical/optical or macrophysical), the magnitude of the correlation tends to be higher than when they are from different categories. The magnitudes of the correlations also change with cloud object type, with the correlations for overcast and stratocumulus cloud objects tending to be higher than those for shallow cumulus cloud objects.

Three pairs of physical properties are studied in detail, using a k-means cluster analysis: re and ␶, OLR and SST, and LW CRF and SW CRF. The cluster analysis of re and ␶ reveals that for each of the cloud types, there is a cluster of cloud objects with negative slopes, a cluster with slopes near zero, and two clusters with positive slopes. The joint OLR and SST probability plots show that the OLR tends to decrease with SST in regions with boundary layer clouds for SSTs above approximately 298 K. When the cloud objects are split into “dry” and “moist” clusters based on the amount of precipitable water above 700 hPa, the associated OLRs increase with SST throughout the SST range for the dry clusters, but the OLRs are roughly constant with SST for the moist cluster. An analysis of the joint PDFs of LW CRF and SW CRF reveals that while the magnitudes of both LW and SW CRFs generally increase with cloud fraction, there is a cluster of overcast cloud objects that has low values of LW and SW CRF. These objects are generally located near the Sahara Desert, and may be contaminated with dust. Many of these overcast objects also appear in the re and ␶ cluster with negative slopes.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Interdisciplinary Science Program (IDS)
Modeling Analysis and Prediction Program (MAP)