Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.


Source contributions to Northern Hemisphere CO and black carbon during spring...

Tilmes, S., L. Emmons, et al. (2011), Source contributions to Northern Hemisphere CO and black carbon during spring and summer 2008 from POLARCAT and START08/preHIPPO observations and MOZART-4, Atmos. Chem. Phys. Discuss., 11, 5935-5983, doi:10.5194/acpd-11-5935-2011.

Anthropogenic pollution and wildfires are main producers of carbon monoxide (CO) and black carbon (BC) in the Northern Hemisphere. High concentrations of these compounds are transported into the Arctic troposphere, influencing the ecosystem in high northern latitudes and the global climate. The global chemical transport model MOZART-4 is used to quantify the seasonal evolution of the contribution of CO and BC from different source regions in spring and summer 2008 by tagging their emissions. Aircraft observations from the POLARCAT experiments, in particular NASA ARCTAS, NOAA ARCPAC, POLARCAT-France, DLR GRACE and YAK-AEROSIB, as well as the NSF START08/preHIPPO experiments during Spring-Summer 2008 are combined to quantify the representation of simulated tracer characteristics in anthropogenic and fire plumes. In general, the model reproduces CO and BC well. Based on aircraft measurements and FLEXPART back-trajectories, the altitude contribution of emissions coming from different source regions is well captured in the model. Uncertainties of the MOZART-4 model are identified by comparing the data with model results on the flight tracks and using MOPITT satellite observations. Anthropogenic emissions are underestimated by about 10% in high northern latitudes in spring, and shortcomings exist in simulating fire plumes. The remote impact of East-Siberian fire emissions is underestimated for spring, whereas the impact of Southeast Asian fire emissions to mid-latitude CO values is overestimated by the model. In summer, mid-latitude CO values agree well between model and observations, whereas summer high latitude East-Siberian fire emissions in the model are overestimated by 20% in comparison to observations in the region. On the other hand, CO concentrations are underestimated by about 30% over Alaska and Canada at altitudes above 4 km. BC values are overestimated by the model at altitudes above 4 km in summer. Based on MOZART-4, with tagged CO and BC tracers, anthropogenic emissions of Asia, Europe and the US have the largest contribution to the CO and BC in mid- and high latitudes in spring and summer. Southeast Asian, Chinese and Indian fires have a large impact on CO pollution in spring in low latitudes with a maximum between 20° and 30°, whereas Siberian fires contribute largely to the pollution in high latitudes, up to 10% in spring and up to 30% in summer. The largest contributions to BC values in high latitudes are from anthropogenic emissions (about 70%). CO and BC have larger mass loadings in April than in July, as a result of photochemistry and dynamics.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Tropospheric Composition Program (TCP)