Lightning activity over the West Pacific Ocean east of the Philippines is usually much less frequent than over the nearby maritime continents. However, in 2005 the Lightning Imaging Sensor (LIS) aboard the TRMM satellite observed anomalously high lightning activity in that area. In the same year the Moderate resolution Imaging Spectroradiometer (MODIS) measured anomalously high aerosol loading. The high aerosol loading was traced to volcanic activity, and not to any factor linked to meteorology, disentangling the usual convolution between aerosols and meteorology. We show that in general lightning activity is tightly correlated with aerosol loadings at both inter‐annual and bi‐ weekly time scales. We estimate that a ∼60% increase in aerosol loading leads to more than 150% increase in lightning flashes. Aerosols increase lightning activity through modification of cloud microphysics. Cloud ice particle sizes are reduced and cloud glaciation is delayed to colder temperature when aerosol loading is increased. TRMM precipitation radar measurements indicate that anomalously high aerosol loading is associated with enhanced cloud mixed phase activity and invigorated convection over the maritime ocean. These observed associations between aerosols, cloud microphysics, morphology and lightning activity are not related to meteorological variables or ENSO events. The results have important implications for understanding the variability of lightning and resulting aerosol‐chemistry interactions.
Observational evidence of aerosol enhancement of lightning activity and convective invigoration
Yuan, T., L.A. Remer, K.E. Pickering, and H. Yu (2011), Observational evidence of aerosol enhancement of lightning activity and convective invigoration, Geophys. Res. Lett., 38, L04701, doi:10.1029/2010GL046052.
Abstract
PDF of Publication
Download from publisher's website
Research Program
Atmospheric Composition Modeling and Analysis Program (ACMAP)
Interdisciplinary Science Program (IDS)
Radiation Science Program (RSP)
Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.