Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Evaluation of Whole Atmosphere Community Climate Model simulations of ozone...

Brakebusch, M., C. E. Randall, D. Kinnison, S. Tilmes, M. Santee, and G. L. Manney (2013), Evaluation of Whole Atmosphere Community Climate Model simulations of ozone during Arctic winter 2004–2005, J. Geophys. Res., 118, 2673-2688, doi:10.1002/jgrd.50226.
Abstract: 

The work presented here evaluates polar stratospheric ozone simulations from the Whole Atmosphere Community Climate Model (WACCM) for the Arctic winter of 2004–2005. We use the Specified Dynamics version of WACCM (SD-WACCM), in which temperatures and winds are nudged to meteorological assimilation analysis results. Model simulations of ozone and related constituents generally compare well to observations from the Earth Observing System Microwave Limb Sounder (MLS). At most times, modeled ozone agrees with MLS data to within ~10%. However, a systematic high bias in ozone in the model of ~18% is found in the lowermost stratosphere in March. We attribute most of this ozone bias to too little heterogeneous processing of halogens late in the winter. We suggest that the model under-predicts ClONO2 early in the winter, which leads to less heterogeneous processing and too little activated chlorine. Model HCl could also be overestimated due to an underestimation of HCl uptake into supercooled ternary solution (STS) particles. In late winter, the model overestimates gas-phase HNO3, and thus NOy, which leads to an over-prediction of ClONO2 (under-prediction of activated chlorine). A sensitivity study, in which temperatures for heterogeneous chemistry reactions were reduced by 1.5 K, shows significant improvement of modeled ozone. Chemical ozone loss is inferred from the MLS observations using the pseudo-passive subtraction approach. The inferred ozone loss using this method is in agreement with or less than previous independent results for the Arctic winter of 2004–2005, reaching 1.0 ppmv on average and up to 1.6 ppmv locally in the polar vortex.

PDF of Publication: 
Download from publisher's website.
Mission: 
Aura