Reliable assessment of the impact of aerosols emitted from boreal forest fires on the Arctic climate necessitates improved understanding of emissions and the microphysical properties of carbonaceous (black carbon (BC) and organic aerosols (OA)) and inorganic aerosols. The size distributions of BC were measured by an SP2 based on the laser‐induced incandescence technique on board the DC‐8 aircraft during the NASA ARCTAS campaign. Aircraft sampling was made in fresh plumes strongly impacted by wildfires in North America (Canada and California) in summer 2008 and in those transported from Asia (Siberia in Russia and Kazakhstan) in spring 2008. We extracted biomass burning plumes using particle and tracer (CO, CH3CN, and CH2Cl2) data. OA constituted the dominant fraction of aerosols mass in the submicron range. The large majority of the emitted particles did not contain BC. We related the combustion phase of the fire as represented by the modified combustion efficiency (MCE) to the emission ratios between BC and other species. In particular, we derived the average emission ratios of BC/CO = 2.3 ± 2.2 and 8.5 ± 5.4 ng m−3/ppbv for BB in North America and Asia, respectively. The difference in the BC/CO emission ratios is likely due to the difference in MCE. The count median diameters and geometric standard deviations of the lognormal size distribution of BC in the BB plumes were 136–141 nm and 1.32–1.36, respectively, and depended little on MCE. These BC particles were thickly coated, with shell/core ratios of 1.3–1.6. These parameters can be used directly for improving model estimates of the impact of BB in the Arctic.
Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008
Kondo, Y., . Matsui, . Moteki, . Sahu, . Takegawa, . Kajino, Y. Zhao, M.J. Cubison, J.L. Jimenez-Palacios, S. Vay, G.S. Diskin, B.E. Anderson, A. Wisthaler, T. Mikoviny, H.E. Fuelberg, D.R. Blake, L.G. Huey, A.J. Weinheimer, D.J. Knapp, and W.H. Brune (2011), Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008, J. Geophys. Res., 116, D08204, doi:10.1029/2010JD015152.
Abstract
PDF of Publication
Download from publisher's website
Research Program
Tropospheric Composition Program (TCP)
Mission
ARCTAS
Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.