Derivation of component aerosol direct radiative forcing at the top of...

The core information for this publication's citation.: 
Zhao, T., H. Yu, I. Laszlo, M. Chin, and W. C. Conant (2008), Derivation of component aerosol direct radiative forcing at the top of atmosphere for clear-sky oceans, J. Quant. Spectrosc. Radiat. Transfer, 109, 1162-1186.
Abstract: 

A two-step approach is proposed to derive component aerosol direct radiative forcing (ADRF) at the top of atmosphere (TOA) over global oceans from 60°S to 60°N for clear-sky condition by combining Terra CERES/MODIS-SSF shortwave (SW) flux and aerosol optical thickness (AOT) observations with the fractions of component AOTs from the GSFC/GOCART model. The derived global annual mean component ADRF is +0.08±0.17 W/m2 for black carbon, −0.52±0.24 W/m2 for organic carbon, −1.10±0.42 W/m2 for sulfate, −0.99±0.37 W/m2 for dust, −2.44±0.84 W/m2 for sea salt, and −4.98±1.67 W/m2 for total aerosols. The total ADRF has also been partitioned into anthropogenic and natural components with a value of −1.25±0.43 and −3.73±1.27 W/m2, respectively. The major sources of error in the estimates have also been discussed. The analysis adds an alternative technique to narrow the large difference between current model-based and observation-based global estimates of component ADRF by combining the satellite measurement with the model simulation.

Research Program: 
Atmospheric Composition Modeling and Analysis Program (ACMAP)