Primary tabs


Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit for information about our current projects.


Comparison of CERES-MODIS stratus cloud properties with groundbased...

Dong, X., P. Minnis, B. Xi, S. Sun-Mack, and Y. Chen (2008), Comparison of CERES-MODIS stratus cloud properties with groundbased measurements at the DOE ARM Southern Great Plains site, J. Geophys. Res., 113, D03204, doi:10.1029/2007JD008438.

Overcast stratus cloud properties derived for the Clouds and the Earth’s Radiant Energy System (CERES) project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains site from March 2000 through December 2004. Retrievals from ARM surface-based data were averaged over a 1-h interval centered at the time of each satellite overpass, and the CERES-MODIS cloud properties were averaged within a 30 km × 30 km box centered on the ARM SGP site. Two data sets were analyzed: all of the data (ALL), which include multilayered, single-layered, and slightly broken stratus decks and a subset, singlelayered unbroken decks (SL). The CERES-MODIS effective cloud heights were determined from effective cloud temperature using a lapse rate method with the surface temperature specified as the 24-h mean surface air temperature. For SL stratus, they are, on average, within the ARM radar-lidar estimated cloud boundaries and are 0.534 ± 0.542 km and 0.108 ± 0.480 km lower than the cloud physical tops and centers, respectively, and are comparable for day and night observations. The mean differences and standard deviations are slightly larger for ALL data, but not statistically different to those of SL data. The MODIS-derived effective cloud temperatures are 2.7 ± 2.4 K less than the surface-observed SL cloud center temperatures with very high correlations (0.86–0.97). Variations in the height differences are mainly caused by uncertainties in the surface air temperatures, lapse rates, and cloud top height variability. The biases are mainly the result of the differences between effective and physical cloud top, which are governed by cloud liquid water content and viewing zenith angle, and the selected lapse rate, -7.1 K km-1. On the basis of a total of 43 samples, the means and standard deviations of the differences between the daytime Terra and surface retrievals of effective radius re, optical depth, and liquid water path for SL stratus are 0.1 ± 1.9 mm (1.2 ± 23.5%), -1.3 ± 9.5 (-3.6 ± 26.2%), and 0.6 ± 49.9 gm-2 (0.3 ± 27%), respectively, while the corresponding correlation coefficients are 0.44, 0.87, and 0.89. For Aqua, they are 0.2 ± 1.9 mm (2.5 ± 23.4%), 2.5 ± 7.8 (7.8 ± 24.3%), and 28.1 ± 52.7 gm-2 (17.2 ± 32.2%), as well as 0.35, 0.96, and 0.93 from a total of 21 cases. The results for ALL cases are comparable. Although a bias in re was expected because the satellite retrieval of effective radius only represents the top of the cloud, the surface-based radar retrievals revealed that the vertical profile of re is highly variable with smaller droplets occurring at cloud top in some cases. The larger bias in optical depth and liquid water path for Aqua is due, at least partially, to differences in the Terra and Aqua MODIS visible channel calibrations. Methods for improving the cloud top height and microphysical property retrievals are suggested.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Modeling Analysis and Prediction Program (MAP)
Radiation Science Program (RSP)