Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Cloud phase characteristics over Southeast Asia from A-Train satellite...

Hong, Y., and L. Di Girolamo (2020), Cloud phase characteristics over Southeast Asia from A-Train satellite observations Yulan Hong and Larry Di Girolamo Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, Atmos. Chem. Phys., 20, 8267-8291, doi:10.5194/acp-20-8267-2020.
Abstract: 

This study examines the climatology of cloud phase over Southeast Asia (SEA) based on A-Train satellite observations. Using the combined CloudSat–CALIPSO (CC) data, five main cloud groups are investigated: ice-only, ice-above-liquid, liquid-only, ice-above-mixed, and mixedonly clouds that have annual mean frequencies of 28.6 %, 20.1 %, 16.0 %, 9.3 %, and 6.7 %, respectively. Liquid-only clouds tend to occur in relatively cold, dry, and stable lower troposphere. The other four cloud groups appear more frequently in relatively warm, humid, and unstable conditions, and their seasonal distributions move with the Asian monsoon and the Intertropical Convergence Zone (ITCZ). Liquid clouds are found to be highly inhomogeneous based on the heterogeneity index (Hσ ) from Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), while iceonly and mixed-only clouds are often very smooth. Iceabove-liquid clouds are more heterogeneous than ice-only clouds owing to ice clouds being optically thin. We demonstrate that the distribution of clear-sky Hσ has a long tail towards heterogeneous values that are caused by undetected subpixel cloud within both CC and MODIS datasets. The reflectance at 0.645 µm (R0.645 ) and brightness temperature at 11 µm (BT11 ) of CC ice-only, liquid-only, and iceabove-liquid clouds show peak frequencies near that of clear sky (R0.645 ∼ 0.02; BT11 ∼ 294 K), which explains why up to 30 % of these CC cloud groups are classified as clear by MODIS. In contrast, mixed-only clouds are thick (average top ∼ 13 km), bright (average R0.645 ∼ 0.6), and cold (average BT11 ∼ 234 K). Cloud phase comparison between CC and MODIS reveals only modest agreement, with the best agreement (73 %) occurring between CC ice-above-mixed and MODIS ice clouds. The intraseasonal and interannual behaviors of the all-sky Hσ and spectral signatures follow that of cloud phase and vary with the Madden–Julian oscillation (MJO) and the El Niño–Southern Oscillation (ENSO) phases.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Atmospheric Composition Modeling and Analysis Program (ACMAP)
Mission: 
CAMP2Ex