Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.


A Comparison of Atmospheric Quantities Determined from Advanced WVR and Weather...

Morabito, D., L. Wu, and S. Slobin (2017), A Comparison of Atmospheric Quantities Determined from Advanced WVR and Weather Analysis Data, IPN Progress Report, 42-209, 42-209.

Lower frequency bands used for deep space communications (e.g., 2.3 GHz and 8.4 GHz) are oversubscribed. Thus, NASA has become interested in using higher frequency bands (e.g., 26 GHz and 32 GHz) for telemetry, making use of the available wider bandwidth. However, these bands are more susceptible to atmospheric degradation. Currently, flight projects tend to be conservative in preparing their communications links by using worst-case or conservative assumptions, which result in nonoptimum data return. We previously explored the use of weather forecasting over different weather condition scenarios to determine more optimal values of atmospheric attenuation and atmospheric noise temperature for use in telecommunications link design. In this article, we present the results of a comparison of meteorological parameters (columnar water vapor and liquid water content) estimated from multifrequency Advanced Water Vapor Radiometer (AWVR) data with those estimated from weather analysis tools (FNL). We find that for the Deep Space Network’s Goldstone and Madrid tracking sites, the statistics are in reasonable agreement between the two methods. We can then use the statistics of these quantities based on FNL runs to estimate statistics of atmospheric signal degradation for tracking sites that do not have the benefit of possessing multiyear WVR data sets, such as those of the NASA Near-Earth Network (NEN). The resulting statistics of atmospheric attenuation and atmospheric noise temperature increase can then be used in link budget calculations.