Warning message

Member access has been temporarily disabled. Please try again later.
The POSIDON website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

Light scattering by Gaussian particles: a solution with finite-difference...

Sun, W., T. Nousiainen, K. Muinonen, Q. Fu, N. Loeb, and G. Videen (2003), Light scattering by Gaussian particles: a solution with finite-difference time-domain technique, J. Quant. Spectrosc. Radiat. Transfer, 79–80, 79-80, doi:10.1016/S0022-4073.
Abstract: 

The understanding of single-scattering properties of complex ice crystals has signiÿcance in atmospheric radiative transfer and remote-sensing applications. In this work, light scattering by irregularly shaped Gaussian ice crystals is studied with the ÿnite-di erence time-domain (FDTD) technique. For given sample particle shapes and size parameters in the resonance region, the scattering phase matrices and asymmetry factors are calculated. It is found that the deformation of the particle surface can signiÿcantly smooth the scattering phase functions and slightly reduce the asymmetry factors. The polarization properties of irregular ice crystals are also signiÿcantly di erent from those of spherical cloud particles. These FDTD results could provide a reference for approximate light-scattering models developed for irregular particle shapes and can have potential applications in developing a much simpler practical light scattering model for ice clouds angular-distribution models and for remote sensing of ice clouds and aerosols using polarized light.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Radiation Science Program (RSP)
Mission: 
CERES