The Operation IceBridge website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.
James Anderson
Business Address:
Department of Chemistry and Chemical Biology Harvard University
Cambridge, MA 02138
United StatesFirst Author Publications:
- Anderson, J., and B. Toon (1993), Airborne Arctic stratospheric expedition II: An overview, Geophys. Res. Lett., 20, 2499-2502.
- Anderson, J., and W. H. Brune (1989), Lloyd, D. W. Toohey, S. P. Sander, W. L. Starr, M. Loewenstein, and J. R. Podolske, J. Geophys. Res., 94, 11,480-11.
Co-Authored Publications:
- Wilmouth, D., et al. (2023), RESEARCH ARTICLE | EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES OPEN ACCESS Impact of the Hunga Tonga volcanic eruption on stratospheric composition, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2301994120.
- Clapp, C., and J. Anderson (2022), Modeling the Effect of Potential Nitric Acid Removal During Convective Injection of Water Vapor Over the Central United States on the Chemical Composition of the Lower Stratosphere, J. Geophys. Res..
- Clapp, C., et al. (2019), Identifying source regions and the distribution of cross‐tropopause convective outflow over North America during the warm season, J. Geophys. Res., 124, 13750-, doi:10.1029/2019JD031382.
- Smith, J. B., et al. (2017), A case study of convectively sourced water vapor observed in the overworld stratosphere over the United States, J. Geophys. Res., 122, 9529-9554, doi:10.1002/2017JD026831.
- Thurlow, M. E., et al. (2014), The development and deployment of a ground-based, laser-induced fluorescence instrument for the in situ detection of iodine monoxide radicals, Rev. Sci. Instrum., 85, 44101, doi:10.1063/1.4869857.
- Wielicki, B., et al. (2013), Achieving Climate Change Absolute Accuracy in Orbit, Bull. Am. Meteorol. Soc., 94, 1519-1539, doi:10.1175/BAMS-D-12-00149.1.
- Sayres, D., et al. (2010), Influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere, J. Geophys. Res., 115, D00J20, doi:10.1029/2009JD013100.
- Sayres, D., et al. (2009), A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere, Review of Scientific Instruments, 80, 044102, doi:10.1063/1.3117349.
- Weinstock, E., et al. (2009), Validation of the Harvard Lyman-a in situ water vapor instrument: Implications for the mechanisms that control stratospheric water vapor, J. Geophys. Res., 114, D23301, doi:10.1029/2009JD012427.
- Wilmouth, D., et al. (2009), Chlorine-Catalyzed Ozone Destruction: Cl Atom Production from ClOOCl Photolysis, J. Phys. Chem. A, 113, 14099-14108, doi:10.1021/jp9053204.
- Leroy, S., et al. (2008), Testing Climate Models Using Thermal Infrared Spectra, J. Climate, 21, 1863-1875, doi:10.1175/2007JCLI2061.1.
- Leroy, S., J. Anderson, and G. Ohring (2008), Climate Signal Detection Times and Constraints on Climate Benchmark Accuracy Requirements, J. Climate, 21, 841-846, doi:10.1175/2007JCLI1946.1.
- Sayres, D., et al. (2008), Validation and determination of ice water contentradar reflectivity relationships during CRYSTALFACE: Flight requirements for future comparisons, J. Geophys. Res., 113, D05208, doi:10.1029/2007JD008847.
- St. Clair, J. M., et al. (2008), A new photolysis laser-induced fluorescence instrument for the detection of H2O and HDO in the lower stratosphere, Review Of Scientific Instruments, 79, 64101, doi:10.1063/1.2940221.
- Hanisco, T. F., et al. (2007), Observations of deep convective influence on stratospheric water vapor and its isotopic composition, Geophys. Res. Lett., 34, L04814, doi:10.1029/2006GL027899.
- Pittman, J. V., et al. (2007), Transport in the subtropical lowermost stratosphere during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment, J. Geophys. Res., 112, D08304, doi:10.1029/2006JD007851.
- Weinstock, E., et al. (2007), Quantifying the impact of the North American monsoon and deep midlatitude convection on the subtropical lowermost stratosphere using in situ measurements, J. Geophys. Res., 112, D18310, doi:10.1029/2007JD008554.
- Co, D. T., et al. (2005), Rotationally Resolved Absorption Cross Sections of Formaldehyde in the 28100-28500 cm-1 (351-356 nm) Spectral Region: Implications for in Situ LIF Measurements, J. Phys. Chem. A, 109, 10675-10682, doi:10.1021/jp053466i.
- Stimpfle, R., et al. (2004), First measurements of ClOOCl in the stratosphere: The coupling of ClOOCl and ClO in the Arctic polar vortex, J. Geophys. Res., 109, D03301, doi:10.1029/2003JD003811.
- Xueref, I., et al. (2004), Combining a receptor-oriented framework for tracer distributions with a cloud-resolving model to study transport in deep convective clouds: Application to the NASA CRYSTAL-FACE campaign, Geophys. Res. Lett., 31, L14106, doi:10.1029/2004GL019811.
- Hanisco, T. F., et al. (2002), In situ observations of HO2 and OH obtained on the NASA ER-2 in the high-ClO conditions of the 1999/2000 Arctic polar vortex, J. Geophys. Res., 107, 8283, doi:10.1029/2001JD001024.
- Hanisco, T. F., et al. (2002), Quantifying the rate of heterogeneous processing in the Arctic polar vortex with in situ observations of OH, J. Geophys. Res., 107, 8278, doi:10.1029/2000JD000425.
- Newman, P., et al. (2002), An overview of the SOLVE/THESEO 2000 campaign, J. Geophys. Res., 107, 20.
- Lanzendorf, E. J., et al. (2001), Establishing the dependence of [HO2]/[OH] on temperature, halogen loading, O3, and Nox based on in situ measurements from the NASA ER-2, J. Phys. Chem. A, 105, 1535-1542.
- Perkins, K. K., et al. (2001), The Nox-HNO3 System in the lower stratosphere: Insights from in situ measurements and implications of the JHNO3-[OH] relationship, J. Phys. Chem. A, 105, 1521-1534.
- Voss, P. B., et al. (2001), Inorganic chlorine partitioning in the summer lower stratosphere: Modeled and measured [ClONO2]/[HCl] during POLARIS, Geophys. Res. Lett., 106, 1713-1732.
- Weinstock, E., et al. (2001), Constraints on the seasonal cycle of stratospheric water vapor using in situ measurements from the ER-2 and a CO photochemical clock, J. Geophys. Res., 106, 22707-22734, doi:2000JD000047.
- Hintsa, E., et al. (1999), On the accuracy of in situ water vapor measurements in the troposphere and lower stratosphere with the Harvard Lyman-α hygrometer, J. Geophys. Res., 104, 8183-8189.
- Cohen, R. C., et al. (1994), Are Models of Catalytic Removal of O3 by HOx accurate? Constraints From in situ Measurements of the OH to HO2 Ratio, Geophys. Res. Lett., 21, 2539-2542.
- Hintsa, E., et al. (1994), SPADE H2O Measurements and the Seasonal Cycle of Stratospheric Water Vapor, Geophys. Res. Lett., 21, 2559-2562.
- Salawitch, R., et al. (1994), The Distribution of Hydrogen, Nitrogen, and Chlorine Radicals in the Lower Stratosphere: Implications for Changes in O3 Due to Emission of NOy from Supersonic Aircraft, Geophys. Res. Lett., 21, 2547-2550.
- Stimpfle, R., et al. (1994), The Response of ClO Radical Concentrations to Variations in NO2 Radical Concentrations in the Lower Stratosphere, Geophys. Res. Lett., 21, 2543-2546.
- Wennberg, P. O., et al. (1994), Aircraft-borne, Laser-Induced Fluorescence Instrument for the in situ detection of hydroxyl and hydroperoxyl radicals, Review of Scientific Instruments, 65, 1858-1876.
- Wennberg, P., et al. (1994), Removal of Stratospheric O3 by Radicals: In Situ Measurements of OH, HO2, NO, NO2, ClO, and BrO, Science, 266, 398-404.
- Avallone, L., et al. (1993), In situ measurement of ClO at midlatitudes: Is there an effect from Mt. Pinatubo?, Geophys. Res. Lett., 20, 2519-2522.
- Salawitch, R., et al. (1993), Chemical Loss of Ozone in the Arctic Polar Vortex in the Winter of 1991-1992, Science, 261, 1146-1149.
- Webster, C. R., et al. (1993), Chlorine chemistry on polar stratospheric cloud particles in the Arctic winter, Science, 261, 1140-1143.
- Toohey, D., et al. (1991), In Situ Measurements of Midlatitude ClO in Winter, Geophys. Res. Lett., 18, 21-24.
- Brune, W. H., et al. (1990), In situ Observations of ClO in the Arctic Stratosphere: ER-2 Aircraft Results from 59°N to 80°N Latitude, Geophys. Res. Lett., 17, 505-508.
- Kawa, S. R., et al. (1990), Interpretation of Aircraft Measurements of NO, ClO, and O3 in the Lower Stratosphere, J. Geophys. Res., 95, 18,597-18.
- Toohey, D., et al. (1990), In situ Observations of BrO in the Arctic Stratosphere, Geophys. Res. Lett., 17, 513-516.
- Austin, J., et al. (1989), Lagrangian Photochemical Modelling Studies of the 1987 Antarctic Spring Vortex, 2: Seasonal Trends in Ozone, J. Geophys. Res., 94, 16,717-16.
- Brune, W. H., J. Anderson, and R. Chan (1989), In situ observations of ClO in the Antarctic: ER-2 aircraft results from 54 S to 72 S latitude, J. Geophys. Res., 94, 16649-16663.
- Jones, R. L., et al. (1989), Lagrangian Photochemical Modeling Studies of the 1987 Antarctic Spring Vortex, 1: Comparison with AAOE Observations, J. Geophys. Res., 94, 11,529-11.
- Rodriguez, J. M., et al. (1989), Nitrogen and Chlorine Species in the Spring Antarctic Stratosphere: Comparison of Models and AAOE Observations, J. Geophys. Res., 94, 16,683-16.
- Schoeberl, M. R., et al. (1989), Reconstruction of the Constituent Distribution and Trends in the Antarctic Polar Vortex from the ER-2 Flight Observation, J. Geophys. Res., 94, 16,815-16.
- Brune, W. H., and J. Anderson (1986), In Situ Observations of Midlatitude Stratospheric ClO and BrO, Geophys. Res. Lett., 13, 1391-1394.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.