Warning message

Member access has been temporarily disabled. Please try again later.
The Operation IceBridge website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

pubs.acs.org/estair Article Assessing the Oxidative Potential of Outdoor PM2.5...

Yang, Y., M. Battaglia, M. Mohan, E. S. Robinson, P. F. DeCarlo, K. C. Edwards, T. Fang, S. Kapur, M. Shiraiwa, M. Cesler-Maloney, W. Simpson, J. R. Campbell, A. Nenes, J. Mao, and R. Weber (2024), pubs.acs.org/estair Article Assessing the Oxidative Potential of Outdoor PM2.5 in Wintertime Fairbanks, Alaska, Environ. Sci. Tech. Air, doi:10.1021/acsestair.3c00066.
Abstract: 

The oxidative potential (OP) of outdoor PM2.5 in wintertime Fairbanks, Alaska, is investigated and compared to those in wintertime Atlanta and Los Angeles. Approximately 40 filter samples collected in January−February 2022 at a Fairbanks residential site were analyzed for OP utilizing dithiothreitol-depletion (OPDTT) and hydroxylgeneration (OPOH) assays. The study-average PM2.5 mass concentration was 12.8 μg/m3, with a 1 h average maximum of 89.0 μg/m3. Regression analysis, correlations with source tracers, and contrast between cold and warmer events indicated that OPDTT was mainly sensitive to copper, elemental carbon, and organic aerosol from residential wood burning, and OPOH to iron and organic aerosol from vehicles. Despite low photochemically-driven oxidation rates, the water-soluble fraction of OPDTT was unusually high at 77%, mainly from wood burning emissions. In contrast to other locations, the Fairbanks average PM2.5 mass concentration was higher than Atlanta and Los Angeles, whereas OPDTT in Fairbanks and Atlanta were similar, and Los Angeles had the highest OPDTT and OPOH. Site differences were observed in OP when normalized by both the volume of air sampled and the particle mass concentration, corresponding to exposure and the intrinsic health-related properties of PM2.5, respectively. The sensitivity of OP assays to specific aerosol components and sources can provide insights beyond the PM2.5 mass concentration when assessing air quality.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Atmospheric Composition
Mission: 
ORACLES
Funding Sources: 
80NSSC18K0557