The IMPACTS website will be undergoing a major upgrade beginning Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Please plan to complete any critical activities before or after this time.
James Szykman
Organization:
U.S. Environmental Protection Agency
Business Address:
NASA-LaRC
Hampton, VA 23681
United StatesCo-Authored Publications:
- Zhang, H., et al. (2022), Improving Surface PM2.5 Forecasts in the United States Using an Ensemble of Chemical Transport Model Outputs: 2. Bias Correction With Satellite Data for Rural Areas, J. Geophys. Res., 127, e2021JD035563, doi:10.1029/2021JD035563.
- Li, J., et al. (2021), Comprehensive evaluations of diurnal NO2 measurements during DISCOVER-AQ 2011: effects of resolution-dependent representation of NOx emissions, Atmos. Chem. Phys., 21, 11133-11160, doi:10.5194/acp-21-11133-2021.
- Jordan, C. E., et al. (2020), Investigation of factors controlling PM2.5 variability across the South Korean Peninsula during KORUS-AQ, variability across the South Korean Peninsula during KORUS-AQ, 8, 28, doi:10.1525/elementa.424.
- Judd, L., et al. (2020), Evaluating Sentinel-5P TROPOMI tropospheric NO2 column densities with airborne and Pandora spectrometers near New York City and Long Island Sound, Atmos. Meas. Tech., doi:10.5194/amt-2020-151.
- Zhang, H., et al. (2020), Improving Surface PM2.5 Forecasts in the United States Using an Ensemble of Chemical Transport Model Outputs: 1. Bias Correction With Surface Observations in Nonrural Areas, J. Geophys. Res., 125, doi:10.1029/2019JD032293.
- Judd, L., et al. (2019), Evaluating the impact of spatial resolution on tropospheric NO2 column comparisons within urban areas using high-resolution airborne data, Atmos. Meas. Tech., doi:10.5194/amt-2019-161.
- Sullivan, J., et al. (2019), Taehwa Research Forest: a receptor site for severe domestic pollution events in Korea during 2016, Atmos. Chem. Phys., 19, 5051-5067, doi:10.5194/acp-19-5051-2019.
- Baker, K. R., et al. (2018), Photochemical model evaluation of 2013 California wild fire air quality impacts using surface, aircraft, and satellite data, Science of the Total Environment, 637–638, 1137-1149, doi:10.1016/j.scitotenv.2018.05.048.
- Judd, L., et al. (2018), The Dawn of Geostationary Air Quality Monitoring: Case Studies From Seoul and Los Angeles, Front. Environ. Sci., 6, 85, doi:10.3389/fenvs.2018.00085.
- Kr1, B., et al. (2018), Photochemical model evaluation of 2013 California wild fire air quality impacts using surface, aircraft, and satellite data., Oct, Sci Total Environ, 1137-1149, doi:10.1016/j.scitotenv.2018.05.048.
- Zoogman, P., et al. (2017), Tropospheric emissions: Monitoring of pollution (TEMPO), J. Quant. Spectrosc. Radiat. Transfer, 186, 17-39, doi:10.1016/j.jqsrt.2016.05.008.
- Wang, J., et al. (2016), Potential application of VIIRS Day/Night Band for monitoring nighttime surface PM2.5 air quality from space, Atmos. Environ., 124, 55-63, doi:10.1016/j.atmosenv.2015.11.013.
- Zhang, Y., et al. (2016), Large vertical gradient of reactive nitrogen oxides in the boundary layer: Modeling analysis of DISCOVER-AQ 2011 observations, J. Geophys. Res., 121, doi:10.1002/2015JD024203.
- Lamsal, L. N., et al. (2014), Evaluation of OMI operational standard NO2 column retrievals using in situ and surface-based NO2 observations, Atmos. Chem. Phys., 14, 11587-11609, doi:10.5194/acp-14-11587-2014.
- Fairlie, T. D., et al. (2009), Lagrangian sampling of 3-D air quality model results for regional transport contributions to sulfate aerosol concentrations at Baltimore, MD, in summer 2004, Atmos. Environ., 43, 3275-3288, doi:10.1016/j.atmosenv.2009.02.026.
- Pierce, B., et al. (2007), Chemical data assimilation estimates of continental U.S. ozone and nitrogen budgets during the Intercontinental Chemical Transport Experiment–North America, J. Geophys. Res., 112, D12S21, doi:10.1029/2006JD007722.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.