Warning message

Member access has been temporarily disabled. Please try again later.
The DCOTSS website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

Influence of turbulence parameterizations on high‐resolution numerical...

Parodi, A., and S. Tanelli (2010), Influence of turbulence parameterizations on high‐resolution numerical modeling of tropical convection observed during the TC4 field campaign, J. Geophys. Res., 115, D00J14, doi:10.1029/2009JD013302.
Abstract: 

In this work, deep moist convective processes, observed during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4) over the East Pacific Intertropical Convergence Zone, were modeled by means of high‐resolution numerical simulations with the Weather Research and Forecasting model. Three different turbulence parameterizations and two microphysical parameterizations are used. Their impact on the spatio‐temporal structure of predicted convective fields is compared to TC4 observations from a geostationary imager, airborne precipitation radar, and dropsondes. It is found that the large‐eddy simulation turbulence closure “upscaled” to the terra incognita range of grid spacings (i.e., 0.1–1 km) is best suited to model the deep convective processes under examination.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Atmospheric Dynamics and Precipitation Program (ADP)
Radiation Science Program (RSP)
Mission: 
TC4