Organization:
NOAA Earth System Research Laboratory
University of Colorado, Boulder
Cooperative Institute for Research in Environmental Sciences
Co-Authored Publications:
- Smith, K., et al. (2024), 1 Chloromethanes in the North American troposphere 2 and lower stratosphere over the past two decades, Geophys. Res. Lett., doi:10.1029/2024GL108710 (submitted).
- Li, J., et al. (2023), A novel, cost-effective analytical method for measuring high-resolution vertical profiles of stratospheric trace gases using a gas chromatograph coupled with an electron capture detector, Atmos. Meas. Tech., 16, 2851-2863, doi:10.5194/amt-16-2851-2023.
- Hu, L., et al. (2022), Continental-scale contributions to the global CFC-11 emission increase between 2012 and 2017, Atmos. Chem. Phys., doi:10.5194/acp-22-2891-2022.
- Liang, Q., et al. (2022), 3-D Atmospheric Modeling of the Global Budget of N2O and Its Isotopologues for 1980–2019: The Impact of Anthropogenic Emissions, Global Biogeochem. Cycles, The impact of anthro, 1980-2019.
- Hintsa, E., et al. (2021), UAS Chromatograph for Atmospheric Trace Species (UCATS) – a versatile instrument for trace gas measurements on airborne platforms, Atmos. Meas. Tech., 14, 6795-6819, doi:10.5194/amt-14-6795-2021.
- Waugh, D., et al. (2013), Tropospheric SF6: Age of air from the Northern Hemisphere midlatitude surface, J. Geophys. Res., 118, 11429-11441, doi:10.1002/jgrd.50848.
- Wofsy, S. C., et al. (2011), HIAPER Pole-to-Pole Observations (HIPPO): Fine-grained, global scale measurements of climatically important atmospheric gases and aerosols, Philosophical Transactions of the Royal Society of London A, 369, 2073-2086, doi:10.1098/rsta.2010.0313.
- Hintsa, E., et al. (2010), First Results from UCATS during the GloPac 2010 Mission, American Geophysical Union, Fall Meeting 2010, abstract #A51B-0093.
- Moore, F., et al. (2006), PANTHER Data from SOLVE-II Through CR-AVE: A Contrast Between Long and Short Lived Compounds, American Geophysical Union, Fall Meeting 2006, abstract #A41A-0025.
- Andrews, A. E., et al. (2001), Mean ages of stratospheric air derived from in situ observations of CO2, CH4, and N2O, J. Geophys. Res., 106, 32.
- Hurst, D., et al. (2000), Comparison of in situ N2O and CH4 measurements in the upper troposphere and lower stratosphere during STRAT and POLARIS, J. Geophys. Res., 105, 19811-19822.
- Newman, P., et al. (1996), Measurements of polar vortex air in the midlatitudes, J. Geophys. Res., 101, 12,879-12.
- Volk, C. M., et al. (1996), Quantifying transport between the tropical and mid-latitude lower stratosphere, Science, 272, 1763-1768.
- Salawitch, R., et al. (1994), The Diurnal Variation of Hydrogen, Nitrogen, and Chlorine Radicals: Implications for the Heterogeneous Production of HNO2, Geophys. Res. Lett., 21, 2551-2554.
- Salawitch, R., et al. (1994), The Distribution of Hydrogen, Nitrogen, and Chlorine Radicals in the Lower Stratosphere: Implications for Changes in O3 Due to Emission of NOy from Supersonic Aircraft, Geophys. Res. Lett., 21, 2547-2550.
- Wofsy, S. C., et al. (1994), Vertical Transport Rates in 1993 From Observations of CO2, N2O and Ch4, Geophys. Res. Lett., 21, 2571-2574.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.