Synonyms: 
DC8
DC-8
NASA DC8
NASA DC-8 -AFRC
Associated content: 

JPL Mark IV Balloon Interferometer

The MkIV interferometer operates in solar absorption mode, meaning that direct sunlight is spectrally analyzed and the amount of various gases at different heights in the Earth's atmosphere is derived from the shapes and depths of their absorption lines. The optical design of the MkIV interferometer is based largely on that of the ATMOS instrument, which has flown four times on the Space Shuttle. The first three mirrors in the optical path comprise the suntracker. Two of these mirrors are servo-controlled in order to compensate for any angular motion of the observation platform. The subsequent wedged KBr plates, flats, and cube-corner retro-reflectors comprise a double-passed Michelson interferometer, whose function is to impart a wavelength-dependent modulation to the solar beam. This is achieved by sliding one of the retro-reflectors at a uniform velocity so that the recombining beams interfere with each other. A paraboloid then focusses the solar beam onto infrared detectors, which measure the interferometrically modulated solar signal. Finally, Fourier transformation of the recorded detector outputs yields the solar spectrum. An important advantage of the MkIV Interferometer is that by employing a dichroic to feed two detectors in parallel, a HgCdTe photoconductor for the low frequencies (650-1850 cm-1) and a InSb photodiode for the high frequencies (1850-5650 cm-1), the entire mid-infrared region can be observed simultaneously with good linearity and signal-to-noise ratio. In this region over 30 different gases have identifiable spectral signatures including H2O, O3, N2O, CO, CH4, NO, NO2, HNO3, HNO4, N2O5, H2O2, ClNO3, HOCl, HCl, HF, COF2, CF4, SF6, CF2ClCFCl2, CHF2Cl, CF2Cl2, CFCl3, CCl4, CH3Cl, C2H2, C2H6, OCS, HCN, N2, O2, CO2 and many isotopic variants. The last three named gases, having well known atmospheric abundances, are important in establishing the observation geometry of each spectrum, which otherwise can be a major source of uncertainty. Similarly, from analysis of T-sensitive CO2 lines, the temperature profile can be accurately determined. The simultaneity of the observations of all these gases greatly simplifies the interpretation of the results, which are used for testing computer models of atmospheric transport and chemistry, validation of satellite data, and trend determination.

Although the MkIV can measure gas column abundances at any time during the day, the highest sensitivity to atmospheric trace gases is obtained by observing sunrise or sunset from a balloon. The very long (~ 400 km) atmospheric paths traversed by incoming rays in this observation geometry also make this so-called solar occultation technique insensitive to local contamination.

Instrument Type: 
Aircraft: 
Balloon, DC-8 - AFRC
Point(s) of Contact: 

Land, Vegetation and Ice Sensor

NASA’s Land, Vegetation and Ice Sensor (LVIS) is a wide-swath, high-altitude, full-waveform airborne laser altimeter and camera sensor suite designed to provide elevation and surface structure measurements over hundreds of thousands of square kilometers. LVIS is an efficient and cost-effective capability for mapping land, water, and ice surface topography, vegetation height and vertical structure, and surface dynamics. The LVIS Facility is comprised of two high-altitude scanning lidar systems plus cameras that have been integrated on numerous NASA, NSF, and commercial aircraft platforms providing a diverse and flexible capability to meet a broad range of science needs. The newest Facility lidar (LVIS-F) began operations in 2017 using a 4,000 Hz laser, and an earlier 1,000 Hz sensor built in 2010 has undergone various upgrades (LVIS-Classic). High-resolution, commercial off-the-shelf cameras are co-mounted with LVIS lidars providing geotagged image coverage across the LVIS swath. LVIS sensors have flown extensively for a wide range of science applications and have been installed on over a dozen different aircraft, most recently on NASA’s high-altitude Gulfstream-V jet based at Johnson Space Center

The LVIS lidars are full-waveform laser altimeters, meaning that the systems digitally record both the outgoing and reflected laser pulse shapes providing a true 3-dimensional record of the surface and centimeter-level range precision. Multiple science data products are available for each footprint, including the geolocated waveform vector, sub-canopy topography, canopy or structure height, surface complexity, and others. LVIS lidars map a ±6 degree wide data swath centered on nadir (e.g., at an operating altitude of 10 km, the data swath is 2 km wide). They are designed to fly at higher altitudes than what is typical for commercial lidars in order to map a wider swath with low incidence angles, avoid the need for terrain following, while operating at much higher speeds that maximize the range of the aircraft. Recent data campaigns include deployments to Antarctica, Greenland, Canada, Alaska, the conterminous US, Central America, French Guiana, and Gabon.

Instrument Type: 
Point(s) of Contact: 

JPL Laser Hygrometer

The JPL Laser Hygrometer (JLH) is an autonomous spectrometer to measure atmospheric water vapor from airborne platforms. It is designed for high-altitude scientific flights of the NASA ER-2 aircraft to monitor upper tropospheric (UT) and lower stratospheric (LS) water vapor for climate studies, atmospheric chemistry, and satellite validation. JLH will participate in the NASA SEAC4RS field mission this year. The light source for JLH is a near-infrared distributed feedback (DFB) tunable diode laser that scans across a strong water vapor vibrational-rotational combination band absorption line in the 1.37 micrometer band. Both laser and detector are temperature‐stabilized on a thermoelectrically-cooled aluminum mount inside an evacuated metal housing. A long optical path is folded within a Herriott Cell for sensitivity to water vapor in the UT and LS. A Herriott cell is an off-axis multipass cell using two spherical mirrors [Altmann et al., 1981; Herriott et al., 1964]. The laser beam enters the Herriott cell through a hole in the mirror that is closest to the laser. The laser beam traverses many passes of the Herriott cell and then returns through the same mirror hole to impinge on a detector.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Meteorological Measurement System

The Meteorological Measurement System (MMS) is a state-of-the-art instrument for measuring accurate, high resolution in situ airborne state parameters (pressure, temperature, turbulence index, and the 3-dimensional wind vector). These key measurements enable our understanding of atmospheric dynamics, chemistry and microphysical processes. The MMS is used to investigate atmospheric mesoscale (gravity and mountain lee waves) and microscale (turbulence) phenomena. An accurate characterization of the turbulence phenomenon is important for the understanding of dynamic processes in the atmosphere, such as the behavior of buoyant plumes within cirrus clouds, diffusions of chemical species within wake vortices generated by jet aircraft, and microphysical processes in breaking gravity waves. Accurate temperature and pressure data are needed to evaluate chemical reaction rates as well as to determine accurate mixing ratios. Accurate wind field data establish a detailed relationship with the various constituents and the measured wind also verifies numerical models used to evaluate air mass origin. Since the MMS provides quality information on atmospheric state variables, MMS data have been extensively used by many investigators to process and interpret the in situ experiments aboard the same aircraft.

Point(s) of Contact: 

Lightning Instrument Project

The LIP (Lightning Instrument Package) measures lightning, electric fields, electric field changes, air conductivity. LIP provides real time electric field data for science and operations support.

The LIP is comprised of a set of optical and electrical sensors with a wide range of temporal, spatial, and spectral resolution to observe lightning and investigate electrical environments within and above thunderstorms. The instruments provide measurements of the air conductivity and vertical electric field above thunderstorms and provide estimates of the storm electric currents. In addition, LIP will detect total storm lightning and differentiate between intracloud and cloud-to-ground discharges. This data is used in studies of lightning/storm structure and lightning precipitation relationships.

Point(s) of Contact: 

MODIS/ASTER Airborne Simulator

The MASTER is similar to the MAS, with the thermal bands modified to more closely match the NASA EOS ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite instrument, which was launched in 1998. It is intended primarily to study geologic and other Earth surface properties. Flying on both high and low altitude aircraft, the MASTER has been operational since early 1998.

Instrument Type: Multispectral Imager
Measurements: VNIR/SWIR/MWIR/LWIR Imagery

Instrument Type: 
Measurements: 
Point(s) of Contact: 

High Altitude Monolithic Microwave integrated Circuit (MMIC) Sounding Radiometer

The High Altitude Monolithic Microwave integrated Circuit (MMIC) Sounding Radiometer (HAMSR) is a microwave atmospheric sounder developed by JPL under the NASA Instrument Incubator Program. Operating with 25 spectral channels in 3 bands (50-60 Ghz, 118 Ghz, 183 Ghz), it provides measurements that can be used to infer the 3-D distribution of temperature, water vapor, and cloud liquid water in the atmosphere, even in the presence of clouds. The new UAV-HAMSR with 183GHz LNA receiver reduces noise to less than a 0.1K level improving observations of small-scale water vapor. HAMSR is mounted in payload zone 3 near the nose of the Global Hawk.

HAMSR was designed and built at the Jet Propulsion Laboratory under the NASA Instrument Incubator Program and uses advanced technology to achieve excellent performance in a small package. It was first deployed in the field in the 2001 Fourth Convection and Moisture Experiment (CAMEX-4) - a hurricane field campaign organized jointly by NASA and the Hurricane Research Division (HRD) of NOAA in Florida. HAMSR also participated in the Tropical Cloud Systems and Processes (TCSP) hurricane field campaign in Costa Rica in 2005. In both campaigns HAMSR flew as a payload on the NASA high-altitude ER-2 aircraft. It was also one of the payloads in the 2006 NASA African Monsoon Multidisciplinary Activities (NAMMA) field campaign in Cape Verde - this time using the NASA DC-8. HAMSR provides observations similar to those obtained with microwave sounders currently operating on NASA, NOAA and ESA spacecraft, and this offers an opportunity for valuable comparative analyses.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Multichannel Coherent Radar Depth Sounder

The Center for Remote Sensing of Ice Sheets (CReSIS) has developed radars (MCoRDS) that operate over the frequency range from 140 to 230 MHz with multiple receivers developed for airborne sounding and imaging of ice sheets. MCoRDS radars have an adjustable radar bandwidth of 20 MHz to 60 MHz. Multiple receivers permit digital beamsteering for suppressing cross-track surface clutter that can mask weak ice-bed echoes and strip-map synthetic aperture radar (SAR) images of the ice-bed interface. With 200 W of peak transmit power, a loop sensitivity > 190 dB is achieved. These radars are flown on twin engine and long-range aircraft including NASA P-3 and DC-8.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Multiple-Angle Aerosol Spectrometer Probe

The Multiple-Angle Aerosol Spectrometer Probe (MASP) determines the size and concentration of particles from about 0.3 to 20 microns in diameter and the index of refraction for selected sizes. Size is determined by measuring the light intensity scattered by individual particles as they transit a laser beam of 0.780µm wavelength. Light scattered from particles into a cone from 30 to 60 degrees forward and 120 to 150 degrees backwards is reflected by a mangin mirror through a condensing lens to the detectors. A comparison of the signals from the open aperture detector and the masked aperture detector is used to accept only those particles passing through the center of the laser beam. The size of the particle is determined from the total scattered light. The index of refraction of particles can be estimated from the ratio of the forward to back scatter signals. A calibration diode laser is pulsed periodically during flight to ensure proper operation of the electronics. The shrouded inlet minimizes angle of attack effects and maintains isokinetic flow through the sensing volume so that volatilization of particles is eliminated.

Instrument Type: 
Point(s) of Contact: 

Measurements of Atmospheric Carbon Dioxide Over Northwestern North America

A modified LI-COR model 6252 infrared gas analyzer forms the basis of a CO2 sampling system. The LI-COR is small (13 x 24 x 34 cm) and composed of dual 12 cm3 volume sample/reference cells; a feedback stabilized infrared source; 500 Hz chopper; thermoelectrically-cooled solid state PbSe detector; and a narrow band (150 nm) interference filter centered on the 4.26 μm CO2 absorption band. Using synchronous signal detection techniques, it operates by sensing the difference in light absorption between the continuously flowing sample and reference gases occupying each side of the dual absorption cell. Thus, by selecting a reference gas of approximately the same concentration as background air (~ 378 ppmv), very minute fluctuations in atmospheric concentration can be quantified with high precision (≤ 0.07 ppmv). The system is operated at constant pressure (250 torr) and has a 0.1 second electronic time response.

During ambient sampling, air is continuously drawn through a Rosemount inlet probe, a permeable membrane dryer to remove H2O(v), the LI-COR, and then exchanged through a diaphragm pump that vents overboard. In-flight calibrations are performed every 15 minutes using standards traceable to the primary standards maintained by the WMO Central CO2 Laboratory. By interpolating between these calibrations, slow drifts in instrument response are effectively suppressed, yielding high precision values. Temperature control of the instrument minimizes thermal drift thus maximizing ambient sampling time by decreasing calibration frequency. The CO2 measurement accuracy is closely tied to the accuracy of the standards obtained from NOAA/CMDL, Boulder, CO prior to the mission.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Pages

Subscribe to RSS - DC-8 - AFRC