Organization:
Massachusetts Institute of Technology
Business Address:
Massachusetts Institute of Technology
Center for Global Change Science
77 Massachusetts Ave., Rm. 54-1312
Cambridge, MA 02142
United StatesCo-Authored Publications:
- An, M., et al. (2022), Rapid increase in dichloromethane emissions from China inferred through atmospheric observations, Nature, doi:10.1038/s41467-021-27592-y.
- Gressent, A., et al. (2022), Growing Atmospheric Emissions of Sulfuryl Fluoride, J. Geophys. Res., 2021), e2020JD034327.
- Mühle, J., et al. (2022), Global emissions of perfluorocyclobutane (PFC-318, c-C4F8) resulting from the use of hydrochlorofluorocarbon-22 (HCFC-22) feedstock to produce polytetrafluoroethylene (PTFE) and related fluorochemicals, Atmos. Chem. Phys., doi:10.5194/acp-22-3371-2022.
- Stell, A. C., et al. (2022), Modelling the growth of atmospheric nitrous oxide using a global hierarchical inversion, EGUsphere, doi:10.5194/egusphere-2022-513.
- Velders, G. J. M., et al. (2022), Projections of hydrofluorocarbon (HFC) emissions and the resulting global warming based on recent trends in observed abundances and current policies, Atmos. Chem. Phys., doi:10.5194/acp-22-6087-2022.
- Rigby, M., et al. (2019), Increase in CFC-11 emissions from eastern China based on atmospheric observations, Nature, doi:10.1038/s41586-019-1193-4.
- Lunt, M. F., et al. (2018), Continued Emissions of the Ozone-Depleting Substance Carbon Tetrachloride From Eastern Asia, Geophys. Res. Lett., 45, 11,423-11,430, doi:10.1029/2018GL079500.
- Brasseur, G. P., et al. (2017), Impact of Aviation: FAA's Aviation Climate Change Research Initiative (ACCRI) Phase II, Bull. Am. Meteorol. Soc., 98, 561-583, doi:10.1175/BAMS-D-13-00089.1.
- Liang, Q., et al. (2017), Deriving Global OH Abundance and Atmospheric Lifetimes for Long-Lived Gases: A Search for CH3CCl3 Alternatives, J. Geophys. Res., 122, 11,914-11,933, doi:10.1002/2017JD026926.
- Lunt, M. F., et al. (2015), Reconciling reported and unreported HFC emissions with atmospheric observations, Proc. Natl. Acad. Sci., doi:10.1073/pnas.1420247112.
- Arnold, T., et al. (2014), HFC-43-10mee atmospheric abundances and global emission estimates, Geophys. Res. Lett., 41, 2228-2235, doi:10.1002/2013GL059143.
- Fraser, P. J., et al. (2014), Australian carbon tetrachloride emissions in a global context, Environ. Chem., 11, 77-88, doi:10.1071/EN13171.
- Ganesan, A. L., et al. (2014), Characterization of uncertainties in atmospheric trace gas inversions using hierarchical Bayesian methods, Atmos. Chem. Phys., 14, 3855-3864, doi:10.5194/acp-14-3855-2014.
- O’Doherty, S., et al. (2014), Global emissions of HFC-143a (CH3CF3) and HFC-32 (CH2F2) from in situ and air archive atmospheric observations, Atmos. Chem. Phys., 14, 9249-9258, doi:10.5194/acp-14-9249-2014.
- Rigby, M., et al. (2014), Recent and future trends in synthetic greenhouse gas radiative forcing, Geophys. Res. Lett., 41, 2623-2630, doi:10.1002/2013GL059099.
- Saikawa, E., et al. (2014), Global and regional emissions estimates for N2O, Atmos. Chem. Phys., 14, 4617-4641, doi:10.5194/acp-14-4617-2014.
- Thompson, R. L., et al. (2014), TransCom N2O model inter-comparison – Part 2: Atmospheric inversion estimates of N2O emissions, Atmos. Chem. Phys., 14, 6177-6194, doi:10.5194/acp-14-6177-2014.
- Thompson, R. L., et al. (2014), TransCom N2O model inter-comparison – Part 1: Assessing the influence of transport and surface fluxes on tropospheric N2O variability, Atmos. Chem. Phys., 14, 4349-4368, doi:10.5194/acp-14-4349-2014.
- Thompson, R. L., et al. (2014), Nitrous oxide emissions 1999 to 2009 from a global atmospheric inversion, Atmos. Chem. Phys., 14, 1801-1817, doi:10.5194/acp-14-1801-2014.
- Belikov, D. A., et al. (2013), Off-line algorithm for calculation of vertical tracer transport in the troposphere due to deep convection, Atmos. Chem. Phys., 13, 1093-1114, doi:10.5194/acp-13-1093-2013.
- Saito, R., et al. (2013), TransCom model simulations of methane: Comparison of vertical profiles with aircraft measurements, J. Geophys. Res., 118, 3891-3904, doi:10.1002/jgrd.50380.
- Patra, P. K., et al. (2011), TransCom model simulations of CH4 and related species: linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere, Atmos. Chem. Phys., 11, 12813-12837, doi:10.5194/acp-11-12813-2011.
- Rigby, M., A. L. Ganesan, and R. G. Prinn (2011), Deriving emissions time series from sparse atmospheric mole fractions, J. Geophys. Res., 116, D08306, doi:10.1029/2010JD015401.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.