An Analysis of Convectively Sourced Water Vapor in the Overworld Stratosphere at Northern Midlatitudes: An Update with Data from SEAC4RS Jessica B. Smith, Maryann Sargent, David Wilmouth, Jasna Pittman, Ru-shan Gao, John Dykema, David Sayres, and James Anderson

Scientific Motivation I

Water Vapor, Radiative Forcing & Climate Feedback

- Radiative impact significant even for ~1 ppmv changes in strat. H_2O
- As temperatures rise, water vapor in UT/LS increases --> +Feedback
- Convective contribution least well understood
- How will the mechanisms that determine UT/LS H₂O change in response to climate forcing?

Scientific Motivation II

Convection, Water Vapor & Potential for Ozone Loss

Scientific Motivation II+

Convection, Chemical Transport & Potential for Ozone Loss

Adapted from http://www.awi.de/en/news/press_releases/detail/item/pm_rex_englisch/

SEAC4RS – Aug. & Sep. 2013, Houston TX ER-2 Flight Tracks & Vertical Profiles

SEAC4RS – Aug. & Sep. 2013, Houston TX Pathways for Air Into UT/LS Study Region

- 1. Young Stratospheric Air from Tropics/Subtropics
- 2. Isentropic Transport from TTL/Upper Tropical Troposphere
- 3. Older Stratospheric Air that has been transported in via NAM Circulation
- 4. Local Convection over the Continental U.S.

Adapted from Weinstock, et al., 2007

Mission Coverage in Past Decade

Constrains Source Regions, Variability by Season and Year, etc.

Evidence of Direct Convective Injection of H₂O Harvard Water Vapor & Isotopologue Data

- Summertime convective plumes observed over Continental U.S.
- Hydration plumes observed to add up to ~12 ppmv above 380 K
- Hydration plumes evident up to ~440 K
- These events circumvent temperature control of tropopause

HWV In Situ Data by Season

Seasonal & Regional Differences, Summer Plumes over U.S.

MLS Satellite Data at 100 hPa

Inter-annual & Seasonal Variability in High Water Events

- Seasonal and regional localization of water vapor enhancements
- Transient events of 15 ppm or more are observed, even as far north as 45°
- MLS events similar to enhancements observed in situ by HWV

Dykema, et al., in preparation, 2014

MLS Satellite Monthly Mean Measurements $\Delta H_2 O = Con. U.S. - Zonal Mean at 100 hPa$

*Numbers refer to estimated # of MLS events with >9 ppmv over CONUS per month

SEAC4RS Water Vapor at 90 (±5) hPa Plume Evident off the Southern Tip of Lake Michigan @ 42°N

Flight of August 27, 2013 Sample MCS Outflow over Great Lakes Region

Convectively Sourced Plume in SEAC4RS Plume in Overworld Stratosphere Observed on Aug. 27, 2013

Overshooting Top Detections Using GOES-IR Selected OT Detections in 4 Days over North America

Linking Aug. 27, 2013 Plume to Storm System Flight Track, OT Detections & Back-trajectories

Results from Lenny Pfister's CI Forecast Air Parcels Showing CI at 53 kft for Aug. 27, 2013

seac4rs_13082718_NMC_AVN170L42_45_50_53 (This plot was generated on Tue Aug 27 13:04:35 2013)

Convectively-influenced 5-day back trajectory at 53 kft level from boxed region on 08/27/2013, 18Z Fig. 1: End locations of trajectories influenced by convection in the past 5 days. Time since most recent convection in color.

Dynamical Context – Tropopause Level High Tropopause for Most of Mission, Sharp Break at ~45°N

Dynamical Context – Lenny's Analysis

Convective Storms, 0 – 2.5 Day Trajectories & Cl at 53 kft

seac4rs_13082718_NMC_AVN170L42_45_50_53 (This plot was generated on Tue Aug 27 13:04:35 2013)

Convectively-influenced 5-day back trajectory at 53 kft level from boxed region on 08/27/2013, 18Z Fig. 2: Trajectories influenced by most recent convection (asterisks) between 0 and 2.5 days

Dynamical Context – Lenny's Analysis Convective Storms, 2.5 – 5 Day Trajectories & CI at 53 kft

seac4rs_13082718_NMC_AVN170L42_45_50_53 (This plot was generated on Tue Aug 27 13:04:35 2013)

Convectively-influenced 5-day back trajectory at 53 kft level from boxed region on 08/27/2013, 18Z Fig. 3: Trajectories influenced by most recent convection (asterisks) later than 2.5 days

Dynamical Context – Back-trajectories

10-day Back-trajectories from Stratospheric Plume Locations

Chemical Context Tracer-Tracer Correlation – H₂O vs. O₃

Chemical Context

Tracers Plotted vs. O₃ & Color-coded by Water VMR

Summary

Complementary Data Sets – Aircraft, Satellite, Radar

Summary

- Convection can deliver large quantities of water directly to the lowermost and overworld stratosphere (up to ~440 K)
- This mechanism bypasses the thermal control of the tropopause
- Plumes are evident in both high-resolution aircraft and global satellite data
- GOES IR imagery is useful for identifying potential storm candidates
- OT algorithm and back trajectories can be used to confirm storm source
- Trajectories show that stratospheric air over central U.S. has a relatively long lifetime

Future Work

Complementary Data Sets & Case-study Comparison

<u>Future</u>

- Radar data are expected to provide additional information about storm evolution and structure
- Additional tracer from SEAC4RS data will be used to provide more information on the amount of near surface boundary layer air that is transported via this mechanism
- Further analysis of this and of four other similar plume case studies will provide insight into the details of the convective source term

The impact of these events may increase in response to climate forcing and higher low-level moisture

Rough Bound of Max. Water at t = 0

Ice Saturation Mixing Ratios Calculated Along 10-day BTs

Dynamical Context – Zonal Wind Fields

Westerly Flow Associated with Jet & Stratospheric Easterly Flow

isotachs (m/s) 100 mb 18Z 27aug2013

Dynamical Context – Zonal Wind Fields

Westerly Flow Associated with Jet & Stratospheric Easterly Flow

isotachs (m/s) 70 mb 18Z 27aug2013

Dynamical Context – Zonal Wind Fields

Westerly Flow Associated with Jet & Stratospheric Easterly Flow

Global Distribution of MCCs in Literature Continental US is Notable for Convection at Mid-Latitudes

http://www.goes-r.gov/users/comet/tropical/textbook 2nd edition/media/graphics/low level jets convection.jpg - From Stensrud, 1996

The global distribution MCCS based on satellite imagery as described in Laing and Fritsch (1997). <u>Figure 5</u> from "Extratropical Synoptic-Scale Processes and Severe Convection" by Charles A. Doswel III, in *Severe Convective Storms* A Meteorological Monograph to be published by <u>The American Meteorological Society</u>

Snapshot of Summertime Convective Hotspots Global Overshooting Top Detections – July 1986

As part of a Cloud Property Climate Data Record being developed for NOAA NCDC at NASA LaRC, OT detections will be produced for all AVHRR observations from 1978-present

NOAA-9 AVHRR July 1986 Overshooting Top Detections, Analysis by Kristopher Bedka