

Agenda

Ministry of Environment National Institute of Environmental Research

Science Team Telecon

- **KORUS-AQ Science Team Meeting KORUS-AQ publications Science Presentations**
- Ја-Но Коо
- Rokjin Park
- Jung-Hun Woo

^{Ministry of Environment} National Institute of Environmental Research

Second KORUS-AQ Science Team Meeting

27-31 August 2018; The Beckman Center at UC-Irvine; <u>www.thebeckmancenter.org</u>

This meeting is being reorganized to focus more specifically on the Final Science Synthesis Report to the Korean Ministry of the Environment scheduled for release in early 2019.

While we expect fewer attendees, this meeting is still open to all who wish to attend.

Those planning to attend need to be prepared to make presentations of research findings that are expected to be published by early next year and would be appropriate for a report to the Ministry of Environment. Also be prepared to contribute to the writing of the report.

There will be a process for submitting your intentions for the meeting to resolve any questions. We also need to hear from those who may not be able to attend, but have relevant material to contribute.

Progress on the broader science output of KORUS-AQ and associated publications will continue to be tracked through monthly telecons and conferences such as AGU.

Publications

Ministry of Environment National Institute of Environmental Research

Going forward, here are a few requirements that will help us to keep track of science team progress and ensure consistency among the published findings:

- 1) Anyone in the draft stage of manuscript writing should email their title and full author list to Jim Crawford. We will keep the list updated and shared at each monthly webex.
- 2) Authors are highly encouraged to present a summary of their analysis and findings during a monthly webex before submitting the paper.
- 3) Authors should also identify the target journal for their paper. We have not yet decided on whether a special issue will be commissioned, but this information may help us to decide whether to have a special issue or allow our papers to span many journals.
- 4) Double check to be sure that the most recent data is being used in your analysis (e.g., LARGE-APS size distribution data for DC-8 was updated today).
- 5) KORUS-AQ data doi's will become available in the near future. Please these doi's to reference the data used in your paper.
- 6) Intercomparison analyses of measurements are underway and will be presented in a future webex. If you are using variables measured by multiple groups, please be aware of and prepare to cite intercomparison results.

Publications (1)

Authors	Title	Journal	Status
Hwajin Kim, Qi Zhang, Jongbae Heo	Influence of Intense secondary aerosol formation and long range transport on aerosol chemistry and properties in the Seoul Metropolitan Area during spring time: Results from KORUS-AQ	Atmospheric Chemistry and Physics	Published
Najin Kim, Minsu Park, Seong Soo Yum, Jong Sung Park, Hye Jung Shin, Joon Young Ahn	Impact of urban aerosol properties on cloud condensation nuclei (CCN) activity during the KORUS-AQ field campaign	Atmospheric Environment	Under Review
W. Hu, D.A. Day, P. Campuzano-Jost, B.A. Nault, T. Park, T. Lee, P. Croteau, M.R. Canagaratna, J.T. Jayne, D.R. Worsnop, J.L. Jimenez	Evaluation of the new capture vaporizer for Aerosol Mass Spectrometers (AMS): Elemental composition and source apportionment of organic aerosols (OA).	ACS Earth Space Chemistry	Published
W. Hu, D.A. Day, P. Campuzano-Jost, B.A. Nault, T. Park, T. Lee, P. Croteau, M.R. Canagaratna, J.T. Jayne, D.R. Worsnop, J.L. Jimenez	, B.A. Nault, T. aratna, J.T. Evaluation of the new capture vaporizer for Aerosol Mass Spectrometers: characterization of organic aerosol mass spectra		Published
Wenfu Tang, A. F. Arellano, J. P. DiGangi, Yonghoon Choi, G. S. Diskin, A. Agustí-Panareda, M. Parrington, S. Massart, B. Gaubert, Youngjae Lee, Dan-bee Kim, Jinsang Jung, Hong Jinkyu, Yugo Kanaya, Mindo Lee, A. M. Thompson, J. H. Flynn, and Jung-Hun Woo	Evaluating High-Resolution Forecasts of Atmospheric CO and CO2 from a Global Prediction System during KORUS-AQ Field Campaign	Atmospheric Chemistry and Physics	In prep
Wenfu Tang, L. K. Emmons, A. F. Arellano Jr., B. Gaubert, C. Knote, S. Tilmes, R. R. Buchholz, G. G. Pfister, D. R. Blake, N. J. Blake, J. P. DiGangi, Yonghoon Choi, G. S. Diskin, Jung-Hun Woo	Source Contribution to Carbon Monoxide during KORUS-AQ Using CAM-chem Tagged Tracers	Atmospheric Chemistry and Physics	In prep

Publications (2)

Authors	Title	Journal	Status	
Eric Heim, et al.	Asian Dust Observed during KORUS-AQ Facilitates the Uptake and Incorporation of Soluble Pollutants during Transport to S. Korea; The Hwangsa Anthropogenic Model	TBD	In prep	
Dan Goldberg, et al.	A high-resolution OMI NO2 product for Korea during KORUS-AQ and using it to derive NOx emissions in Seoul	TBD	In prep	
Myungie Choi et al.	Assessment of aerosol optical properties from GOCI, MODIS, VIIRS, and MISR measurements over East Asia during 2016 KORUS-AQ campaign			
Myungje Choi, Seoyoung Lee, et al.	Assessment of 3-D aerosol distribution for long-range transport and local emission using GOCI and ground, airborne, and satellite lidar measurement during 2016 KORUS-AQ	TBD	In prep	
Heesung Chong, Seoyoung Lee, et al.	PCA-based trace gas retrievals from GeoTASO airborne measurements during KORUS-AQ	TBD	In prep	
Heesung Chong, et al.	Surface NO2 volume mixing ratio estimated from total column observations of Pandora spectrometer during KORUS-AQ	TBD	In prep	
Seoyoung Lee, Ja-Ho Koo, et al.	ung Lee, Ja-Ho Koo, et al. Regional transport effect to explain the aerosol concentration and variation in the Korean peninsula		In prep	
Sujung Go, et al.Imaginary part of refractive index derived from UV-MFRSSujung Go, et al.Seoul, and implications for retrieving UV Aerosol Optical for GEMS measurements		TBD	In prep	
Hyungkwan Lim, et al.	Aerosol loading height retrieval from AHI using spatiotemporal variability during KORUS AQ	TBD	In prep	

Publications (3)

Authors	Title	Journal	Status
Hyungkwan Lim, et al.	Intercomparison of aerosol optical depth data using AHI, GOCI and MI from Yonsei AErosol Retrieval (YAER) algorithm	TBD	In prep
Yeseul Cho, Ja-Ho Koo, et al.	Spatiotemporal properties of O3 and NO2 in the Seoul Metropolitan Area: comparison among total column, vertical profile, and surface patterns	TBD	In prep
Sang Seo Park, et al.	Temporal variation of total ozone without its variations at surface and stratosphere	TBD	In prep
aul Romer, Ron Cohen, et al. HONO and NOx		TBD	In prep
W. Hu, P. Campuzano-Jost, D. A. Day, B. A. Nault, T. Park, T. Lee, A. Pajunoja, A. Virtanen, P. Croteau, M. R. Canagaratna, J. T. Jayne, D. R. Worsnop, J. L. Jimenez	Size distributions and ambient quantifications for organic aerosol (OA) in aerosol mass spectrometer (AMS) instruments with the new capture vaporizer (CV)	Journal of Aerosol Science	In prep
B. A. Nault, P. Campuzano-Jost, D. A. Day, J. C. Schroder, B. Anderson, A. Beyersdorf, D. R. Blake, W. H. Brune, J. D. Crounse, R. C. Cohen, Y. Choi, C. Corr, J. A. de Gouw, J. Dibb, J. P. DiGangi, G. Diskin, A. Fried, L. G. Huey, M. J. Kim, C. J. Knote, K. D. Lamb, T. Lee, D. D. Montzka, T. Park, A. E. Perring, S. E. Pusede, P. S. Romer, E. Scheuer, J. P. Schwarz, K. L. Thornhill, P. O. Wennberg, A. J. Weinheimer, A. Wisthaler, J. H. Woo, P. J. Wooldridge, and J. L. Jimenez	Secondary Organic Aerosol Production over Seoul, South Korea, during KORUS-AQ	Atmospheric Chemistry and Physics	In prep

Publications (4)

Authors	Title	Journal	Status
B. A. Nault, P. Campuzano-Jost, D. A. Day, J. C. Schroder, D. R. Blake, M. R. Canagaratna, J. A. de Gouw, F. Flocke, A. Fried, J. B. Gilman, T. F. Hanisco, L. G. Huey, B. T. Jobson, W. C. Kuster, B. Lefer, J. Liao, D. D. Montzka, I. B. Pollack, J. Peischl, B. Rappenglueck, J. M. Roberts, T. B. Ryerson, J. Stutz, P. Weibring, A. J. Weinheimer, E. C. Wood, and J. L. Jimenez	Quantification of the Rapid Photochemical Secondary Organic Aerosol Production Observed across Megacities around the World	Nature Geosciences or PNAS	In prep
B. A. Nault, P. Campuzano-Jost, D.A. Day, W. W. Hu, B. B. Palm, J. C. Schroder, R. Bahreini, H. Bian, M. Chin, S. L. Clegg, P. Colarco, J. Crounse, J. A. de Gouw, J. Dibb, M. J. Kim, J. Kodros, F. D. Lopez- Hilfiker, E. A. Marais, A. Middlebrook, J. A. Neuman, J. B. Nowak, J. Pierce, J. M. Roberts, E. Scheuer, J. A. Thornton, P. R. Veres, P. O. Wennberg, and J. L. Jimenez	Global Survey of Submicron Aerosol Acidity (pH)	Nature Geosciences or PNAS	In prep
D. Jeong, R. Seco, D. Gu, Y. Lee, B. Nault, C. Knote, T. Mcgee, J. Sullivan, J. L. Jimenez, P. Campuzano- Jost, D. Blake, D. Sanchez, A. Guenther, D. Tanner, G. Huey, R. Long, B. E. Anderson, S. R. Hall, YJ. Lee, D. Kim, JY. Ahn, A. Wisthaler, and S. Kim	Integration of Airborne and Ground Observations of Nitryl Chloride in the Seoul Metropolitan Area and Its Impact on the Regional Oxidation Capacity During the KORUS-AQ 2016 Field Campaign	TBD	In prep
D. Sanchez, R. Seco, D. Gu, A. Guenther, D. Jeong, J. Mak, YJ. Lee, D. Kim, D. Blake, S. Herndon, D. Jeong, T. Mcgee, and S. Kim	OH Reactivity Budget Analysis at the Taehwa Research Forest During KORUS-AQ 2016	TBD	In prep

Publications (5)

Authors	Title	Journal	Status
Isobel Simpson, et al.	Characterization and source apportionment of VOCs in the Seoul Metropolitan Area	TBD	In prep
Kara Lamb, et al.	Regional influences on the direct radiative forcing from black carbon observed over S. Korea	JGR-Atmospheres	In prep
Jinkyul Choi, Rokjin J. Park, Hyung-Min Lee, Seungun Lee, Duseong S. Jo, Jaein I. Jeong, Daven Henze, Jung-Hun Woo, Soo-Jin Ban, Min-Do Lee, Cheol-Soo Lim, Mi-Kyung Park, Hye J. Shin, Seogju Cho, and David Peterson	Source attribution of PM2.5 for Korea during the KORUS-AQ campaign using GOES-Chem adjoint model	TBD	In prep
Yujin Ok, Rokjin J. Park, D. Blake, W. Brune, A. Weinheimer, A. Fried, J. Crawford, and J. Schroeder	Evaluation of simulated VOCs during the KORUS-AQ campaign and their effect on ozone production in Korea	TBD	In prep
Hyeonmin M. Kim, Rokjin J. Park, Jaein I. Jeong, Daun Jeong, Saewung Kim, and Seogju Cho	Effect of nitryl chloride chemistry on oxidation capacity in East Asia	TBD	In prep
Hyung-Min Lee, Rokjin Park, Hyeong-Ahn Kwon	-Min Lee, Rokjin Park, Hyeong-Ahn Kwon Min Lee, Rokjin Park, Hyeong-Ahn Kwon formaldehyde with KORUS-AQ aircraft observations		In prep
David Peterson, et al.	Meteorology Influencing Pollution Regimes and Transport during KORUS-AQ	TBD	In prep

Publications (6)

Authors	Title	Journal	Status
K. Miyazaki, T. Sekiya, D. Fu, K. Bowman, S. Kulawik, K. Sudo, T. Walker, Y. Kanaya, M. Takigawa, K. Ogochi, H. Eskes, F. Boersam, B. Gaubert, J. Barre, and L. Emmons, and the KORUS-AQ team	Evaluation of a multi-constituent chemical reanalysis during KORUS-AQ: Role of dynamics and emissions	JGR-Atmospheres	In prep
Changmin Cho, J. St. Clair, G. Wolfe, Jin Liao, Sukhan Jung, Dae il Kang, Jinsoo Choi, Myung-Hwan Shin, Jinsoo Park, T. Hanisco, Kyung-Eun Min	Top-down estimation of volatile organic compounds (VOCs) emission rates in petrochemical complex using airborne in-situ formaldehyde (HCHO) observation	Atmospheric Environment or ACP	In prep
Minsu Park, Najin Kim, Seong Soo Yum, Lee Thornhill, Bruce Anderson, Dong-Su Kim, Hyun-Jae Kim, Ha-Eun Jeon, Yun-Seo Park, Sang-Bo Lee	On the submicron aerosol distributions and CCN activity in and around the Korean Peninsula measured onboard the NASA DC-8 research aircraft during the KORUS-AQ field campaign	TBD	In prep
Jin Liao, T. Hanisco, G. Wolfe, J. St. Clair, J. Jimenez, P. Campuzano-Jost, B. Nault, A. Fried, E. Marais, G. Gonzalez Abad, K. Chance, H. Jethva, T. Ryerson, C. Warneke, A. Wisthaler	Towards a satellite-in situ hybrid proxy for organic aerosol abundance	АСР	In prep
Mark F. Lunt, Sunyoung Park, Shanlan Li, Stephan Henne, Alistair J. Manning, Anita L. Ganesan, Isobel J. Simpson, Donald R. Blake, Qing Liang, Simon O'Doherty, Christina M. Harth, Jens Muhle, Peter K. Salameh, Ray F. Weiss, Paul B. Krummel, Paul J. Fraser, Ronald G. Prinn, Stefan Reimann, and Matthew Rigby	phan , Isobel on Peter K. II J. I		Submitted

Publications (7)

Authors	Title	Journal	Status
Herman, Jay, Elena Spinei, Jhoon Kim, Jae Kim, Woogyung Kim, Nader Abuhassan, Michal Segal- Rozenhaimer, Alexander Cede	NO2 and HCHO Measurements in Korea from 2012 to 2016 using a network of Pandora Spectrometer Instruments	AMT	Submitted
Spinei, E., N. Abuhassan, A Cede, M. Tiefengraber, M. Mueller, J. Herman, N. Nowak, B. Poche, S. Choi7, A. Whitehill, J. Szykman, V. Lukas, D. Williams, R. Long, Jin Liao, Jason St. Clair, Glenn Wolfe, Thomas Hanisco, Changmin Cho, Alan Fried, Petter Weibring, Dirk Richter, Robert Swap, James Walega	Pandora formaldehyde measurements during KORUS-AQ over Olympic Park and Taehwa (South Korea, April-June 2016)	AMT	Submitted
KORUS-AQ Leadership	KORUS-AQ Overview Paper	BAMS?	In prep

The effect of long-range transboundary transport on the Korean aerosol pollution during the KORUS-AQ campaign.

Seoyoung Lee¹, Jhoon Kim^{1,2}, Myungje Choi¹, Jaemin Hong¹, Hyunkwang Lim¹, Tom F. Eck³, Brent N. Holben³, Joon-Young Ahn⁴, Jeong Soo Kim⁴, and Ja-Ho Koo¹

¹Department of Atmospheric Sciences, Yonsei University, Seoul, Republic of Korea ²Harvard Smithsonian Center for Astrophysics, Cambridge, MA, USA ³NASA Goddard Space Flight Center, Greenbelt, MD, USA ⁴National Institute of Environmental Research, Incheon, Republic of Korea

Main motivation of this study

- Remote-sensing based investigation of long-range transboundary transport (LRTT) from the west of Korea to evaluate the transport effect to the Korean domestic air quality during the KORUS-AQ campaign.

Used data in this study

- AERONET version 2 and version 3 dataset: Aerosol optical depth (500 nm) and Angstrom exponent (440-870 nm)
- Satellite AOD measurements: Geostationary Ocean Color Imager (GOCI) and Advanced Himawari Imager (AHI) observations
- HYSPLIT-4 back-trajectory calculations, comparing with the FLEXPART back-trajectories provided from Christoph Knote.

AERONET sites during the KORUS-AQ campaign

For the research purpose
(investigation of transport effect
from the west), here we highlight
the 6 sites located in the western
part of Korean peninsula.

AOD at 500 nm

AERONET version 3 (Eck et al., 2018)

Extreme AOD composite analysis for each site

Highest AOD cases (5 days) Lowest AOD cases (5 days)

The range of AOD enhancement compared to the mean condition

AOD increase (%) = (5 day composite showing high AOD – Mean AOD)/mean AOD × 100

Spatial pattern of 2-day back-trajectories (HYSPLIT-4 calculations)

2-day back trajectories for 5 highest AOD days

2-day back trajectories for 5 lowest AOD days

Height variation of 2-day back-trajectories (HYSPLIT-4 calculations)

Comparison with FLEXPART results

- FLEXPART Lagrangian Particle Dispersion Model (http://www.flexpart.eu)
- Christoph Knote (Meteorological Institute, LMU Munich, Germany)
- Trajectories driven by NCEP GFS analyses (+3 hours forecasts interlaced) on 0.25 degrees.
- Trajectories were calculated every 6 hours (0, 6, 12, 18 UTC) and particles were followed back in time for 10 days (120 hours).

	HYSPLIT	FLEXPART			
date	KORUS-AQ (2016	.05.02-2016.06.12)			
Arrival height	500 m	0 m			
Time interval	Every 1 hour	Every 6 hours (0,6,12,18 UTC)			
MET data	NCEP GDAS $(1 \times 1^{\circ})$	NCEP GFS (0.25 × 0.25°)			
Comparison sites	Baengnyeong, Olympic Park,	Baengnyeong, Olympic Park, Anmyon, Gwangju, and Gosan			

Height variation of 2-day back-trajectories (FLEXPART calculations)

Combination of GOCI AOD and HYSPLIT 3-day back-trajectories (for 5 highest AOD days)

Spatial correlations using GOCI AOD: A pixel including each site vs. other pixels

(data number > 20)

- Seoul Metropolitan Area seems generally under the influence of LRTT from the west
 - Correlation with the air condition of Shandon peninsula in a same day range
 - Correlation with the air condition of Jing-Jin-Ji (Beijing-Tianjin-Hebei) with a day time lag

Model inter-comparisons for aerosols and gases during KORUS-AQ

Rokjin J. Park¹, Seungun Lee¹, Jinkyul Choi¹, Yujin Ok¹, Hyung-Ahn Kwon¹, Hyeonmin Kim¹, Heesoo Jang¹ and KORUS-AQ Team

1. School of Earth and Environmental Sciences, Seoul National University, Seoul, Republic of Korea

KORUS-AQ telecon. 19 June 2018

- Regional Models :
 - 1. CAMx (Ajou Univ., KOR)
 - 2. CMAQ (GIST, KOR)
 - 3. WRF-Chem (NCAR, US)
 - 4. WRF-Chem (PNU, KOR)
- Global Models :
 - 1. CAM-Chem (NCAR, US)
 - 2. GEOS-Chem (SNU, KOR)

Comparisons of species emissions rates in South Korea

S.Korea Emission (ton/month)	KORUSv1	KORUSv2
NO	45300	47400
СО	61400	93200
NMVOC	38475	93582
SO ₂	25900	27700
NH ₃	25100	26100
ОС	989	1930
BC	1010	1660

Multimodel Intercomparison for Aerosols (altitude < 2km)

Multimodel Intercomparison for Aerosols (altitude < 2km)

Implementing VBS Approach for SOA Production

Mechanistic understanding on the formation and sources of organic aerosols in Korea is needed to improve models.

Multimodel Intercomparison for Aerosol Nitrate Partitioning

Total nitrate [ppbv]

Photolysis of nitrate aerosol as a daytime source of HONO

Models failed to reproduce observed PM2.5 during the stagnation period of the campaign.

Fire Count Map

[[]NASA-FIRMS]

[KORUS-AQ-RSSR]

Stagnant 5/17-5/22 (Persistent High Pressure)

May 18th

May 20th

Units are [ppbv] except for OH

Scatter Plot (Altitude < 2km)

Scatter Plot (Altitude < 2km)

VOC-NO_x-O_x gas phase chemistry simulation

Simulated O₃ concentration (ppbv) and O₃ production efficiency

Comparisons of ClNO₂: GEOS-Chem vs. Observations

		CINO ₂	Mean [ppt]	Max [ppt]	Median	R	NMB	NME	MB [ppt]	ME [ppt]
		OBS	85.54	757.00	24.67					
Olyr	mpic ark	Natural	57.09	592.56	19.39	0.39	-0.32	0.0012	-23.36	56.62
	ant	Natural + Anthropogenic	90.98	690.28	38.67	0.53	0.10	0.0012	7.01	56.71
	4.	OBS	143.98	1331.40	34.17					
N Tae	/lt. >hwa	Natural	49.14	675.14	23.75	0.28	-0.64	0.0013	-81.67	106.51
140		Natural + Anthropogenic	110.52	787.43	50.94	0.41	-0.17	0.0013	-22.04	102.00

Inclusion of ClNO₂ reduces biases in gases and aerosols in GEOS-Chem

[Kim et al., in prep.]

- Models consistently underestimate organic aerosol concentrations.
- A large discrepancy among models is found for inorganic aerosols.
- Photolysis of nitrate aerosol could be important as a daytime source of HONO and additional loss of nitrate aerosol.
- Siberian forest fires have a significant impact on aerosol concentration during the KORUS-AQ.
- Aromatic VOCs play a significant role in the formation of ozone and organic aerosols in Korea along with nitryl chloride chemistry.
- Anthropogenic NH₃ and NO_x from the domestic sources and Chinese SO₂ contribute mostly to PM2.5 concentrations in Korea.

Evaluation of the Large Point Source Emissions in the KORUS-AQ Version 2.0 Emissions Inventory

jwoo@konkuk.ac.kr

Jung-Hun Woo¹, Minwoo Park¹, Younha Kim¹, Rokjin J. Park², Louisa Emmons³

and other KORUS-AQ members...

1 Konkuk University, Seoul, Korea

2 Seoul National University, Seoul, Korea

3 NCAR, Boulder, USA

1. Background and Objectives

Science

- Better understanding of the factors controlling air quality
- Test and improve model simulations of air quality

Societal Impact

 Provide guidance on measures to improve air q uality in Korea

Base Emissions Inventory: NIER/KU-CREATE*

- Anthropogenic Emissions Inventory
 GAINS-Korea/Asia with national activities/policies
- Year 2010, Asia regions, ~300 SCCs
- Pols.: CO₂, NO_x, PM₁₀, PM_{2.5}, SO₂, VOC, NH₃, CO
- Biogenic(MEGAN), Biomass burning(BlueSky)

KORUS Emissions Inventory (ver. 1.0/2.0)

* Comprehensive Regional Emissions for Atmospheric Transport Experiments

Research Objectives

Objective A : Evaluation of Large Point Sources(LPSs) Emissions in Korea

Objective B : Development of LPSs Inventory in China

Objective A : Evaluate Large Point Sources(LPSs) in Korea

Evaluate LPSs near Seoul using KORUS-AQ flight measurement

Site of Large Amount Emission in 2016

Rank	Site	NO _X (ton/yr)	Category
1	Samcheonpo Power	22,943	Power
2	Boryeong Power	16,788	Power
3	Taean Power	15,446	Power
4	Ssangyong Cement	13,270	Cement
5	Dangjin Power	11,853	Power
6	Tongyang Cement	11,278	Cement
7	Posco Gwangyang Works	11,126	Steel
8	Hyundai Steel	10,271	Steel
9	Posco	10,147	Steel
10	Hanil Cement	10,070	Cement

2. Evaluate Large Point Sources(LPSs) in Korea

2-1. Research Setting

Objective : Evaluate LPS(Large Point Source) Emissions using the DC-8 flight (June 5, 2016)

- Large Power Plants and Industrial Complex are located at Chungcheongnam-do and Jeallabuk-do.
- Large Point sources (LPSs) influence largely to Seoul Metro(SMA)'s air quality.
- In particular, LPSs in Chungcheongnam-do put great impacts because they are close to SMA
- So, we wanted to evaluate the accuracy of CAPSS, which is Korea National Emissions Statistics using KORUS-AQ measurement

2-2. Method

		Dangjin PP	Hyundai Steel	Boryeong PP	Seocheon PP	Gunsan Industrial complex
Effective stack height,	, H (m)	357.9	282.7	307.7	282.7	74.6
Dispersion Coefficient	, σ _γ (m)	300	150	60	300	200
Distance, x (km))	2	0.8	0.1	1.7	2
Altitude, z (m)		342	353	362	346	310
Wind Speed, u (m	/s)	2.3	2.4	2.1	2.9	2.2
emissions by CAPSS,	NOx	17,146	7,427	17,454	1,066	1,392
Q (ton/yr)	SO ₂	7,223	7,819	11,656	491	1,075

High concentration side

FID

Opposite side

- The Wind Speed and Flight Height values in blue and red circles were averaged to calculate 'U' and 'Z' at each LPSs
- 'X' is the distance from stacks to measurements, which also explains the wind direction.

2-3. Result (SO₂)

Up to 63% of possible under estimation of LPS emission

Concentration ratio	Dangjin	Hyundai	Boryeong	Seocheon	Gunsan
(SO ₂)	PP	Steel	PP	PP	Ind. Comp.
Model/Meas.	0.37	0.64	0.78	0.5	0.56

2. Korea LPSs Evaluation

2-3. Result (Dangjin PP) **Dangjin Power Plant** KORUS-AQ, DC-8 flight (5 June 2016) GTCIMS (unit : ppbv) 0.438 0.438 - 1.244 .244 - 2.258 2.258 - 3.876 3.876 - 6.469 469 - 9.717 18.488 34 219 Source : In-situ CIMS measurements of PANs, SO2, and HCI Dangjin Power Plant Wind direction(East)

Only one-third of measured SO₂ concentrations were reproduced by LPS emissions!

Ratio (Model) Measurement	CAPSS 2013	
	SO ₂	0.37	

2. Korea LPSs Evaluation

Ratio (<u>Model</u>) Measurement)	CAPSS 2013	Updated CAPSS
SO ₂	0.37	0.71

2-4. Result of Korea LPSs inventory evaluation

		Dangjin PP		Hyundai	Boryeong	Seocheon	Gunsan
		CAPSS2013	Updated	Steel	РР	РР	Ind. Comp.
NOx(ton/yr)		17,146	25,719	7,427	17,454	1,066	1,392
SO ₂ (ton	/yr)	7,223	10,835	7,819	11,656	491	1,076
Reduction Facility		SCR	SCR	precipitate facility	SCR	electrostatic precipitator	electrostatic precipitator
Fuels		Bituminous coal, LNG, Cokes	Bituminous coal, LNG, Cokes	Flaming coal, Light oil	Bituminous coal, LNG	Anthracite, Bituminous coal, Heavy oil, Light oil	Heavy oil, LNG, Cokes
Model/Meas.	NOx	0.96	1.51	1.21	1.02	1.24	1.30
	SO ₂	0.37	0.71	0.74	0.78	0.50	0.56

SCR : Selective Catalytic Reduction

- At 5 sites, NOx emissions seem to be overestimated (ratio from 0.96 to 1.51) and SO₂ seem to be underestimated(ratio from 0.5 to 0.78)
- Evaluation of the model-measurement ratio helped **improving emissions information** in case of the Dangjin Power Plant
- Using the multiple fuels could increase the uncertainty of the emission inventory

2-4. Result of Korea LPSs inventory evaluation (with chemical reaction)

		Dangjin PP		Hyundai	Boryeong	Seocheon	Gunsan
		CAPSS2013	Updated	Steel	РР	РР	Ind. Comp.
NOx(ton/yr)		17,146	25,719	7,427	17,454	1,066	1,392
SO ₂ (ton	/yr)	7,223	10,835	7,819	11,656	491	1,076
Reduct Facilit	ion ty	SCR	SCR	precipitate facility	SCR	electrostatic precipitator	electrostatic precipitator
Fuels		Bituminous coal, LNG, Cokes	Bituminous coal, LNG, Cokes	Flaming coal, Light oil	Bituminous coal, LNG	Anthracite, Bituminous coal, Heavy oil, Light oil	Heavy oil, LNG, Cokes
Model/Meas.	NOx	0.96	1.30	1.16	1.02	1.07	1.02
	SO ₂	0.37	0.71	0.74	0.78	0.50	0.56

SCR : Selective Catalytic Reduction

$$C(x, y, z; H) = \frac{Q \operatorname{e}^{(-\mathrm{kt})}}{2\pi u \sigma_y \sigma_z} \exp\left[-\frac{y^2}{2\sigma_y^2}\right] \left\{ \exp\left[-\frac{(H-z)^2}{2\sigma_z^2}\right] + \exp\left[-\frac{(H+z)^2}{2\sigma_z^2}\right] \right\}$$

- Chemical Atmospheric lifetime of NO2 and SO2 were considered Foy et al., 2015 and Lee et al., 2011, respectively.
- Applying chemical reaction (decay) made the agreement better, especially for NOx (up to 22%)

Objective B : Develop LPSs Inventory in China

: Importance of China LPSs to Air Quality in Korea

3. Develop LPSs Inventory in China

3-1. Background

Horizontal Transport by Vertical Injection Height (HYSPLIT)

Local vs. Transboundary Contribution

J. Woo, MICS, 2011

3-2. Research Setting

- Global Coal Plant Tracker's info.
 - : location, status, operator, size, CO₂ emis.

- HTAP_v2 dataset with 0.1°×0.1° Grid map
 - : SO₂ emis. From Energy sector in 2010

Red : Coal PP Blue : Non-Coal PP

3-3. Process of LPS emission inventory development in China

• Procedure

Data

•

3-4. Inventory development result

- Total 3,798 stacks (Coal PP : 2,706, Non-Coal PP : 1,092) were found as China Large Point Sources(LPSs)
- China Point source based on **Power Plant(PP) sector** in CREATE inventory.
- Power Plant(PP) sector emissions in the CREATE inventory were allocated to each stack.
- Of the total emissions, the power sector accounts for **37.4% of CO₂** and **23.5% of NO_x**.
- For NH₃, the emissions increased 92 times from the year 2010 level to correctly represent new installation n of NO_x abatement technologies in China. The GAINS ECLIPSE v5a scenario was used.

the injection height (HYSPLIT) **Point source** emission vertical profiles 10m 250m 500m 1,000m 12 11 3rd. 10 May 9 8 7 6 16th. 5 4th layer includes May 47% of total LPSs 4 emissions 3 2 1 0% 40% 10% 20% 30% 50% % LPS Emission 23th. May • Date : May 3, 16, 23, 2016 • Transboundary case during KORUS-AQ • Location : JJJ, Shandong, YRD Injection height range • between 250m and 1,000m.

Horizontal Transport with respect to

Vertical layer

4. Summary

- Large Point Sources(LPSs) emission inventories were evaluated(Korea) and improved(China) in support of NIER/NASA KORUS-AQ
- We have evaluated NO_x and SO₂ Emissions from 5 LPSs over that western part of South Korea (near SEOUL) using the DC-8 June 5th flight, CAPSS inventory, and measurement-driven Gaussian plume model
- Inter-comparison of modeled and measured concentration were conducted to understand validity of large point source emissions
- At 5 sites, NO_x emissions tend to be overestimated (ratio from 0.96 to 1.3) and SO₂ tend to be underestimated(ratio from 0.5 to 0.78). The ranges are, however, fair considering the averaging time of both dataset
- For China LPS inventory, total 3,798 stacks (Coal PP : 2,706 , Non-Coal PP : 1,092) were found
- From the analysis of injection layer height using SMOKE-Asia, 47% of the total emissions in the 4th layer, and most of emissions were injected between 250 and 1,000 meters
- Injection height affected much of their horizontal path, based on initial HYSPLIT modeling

AIS Research Group @ Konkuk University

(Dr. Younha Kim, Mr. Chanjong Bu, Ms. Ji nsu Kim, Mr. Yungu Lee, Mr. Jonseok Kim, Ms. Youjung Jang, Ms. Geunhye Park)

Thank You!

NASA/NIER KORUS-AQ Team

