Science Team Telecon (26/27 June 2023)

Ministry of Environment National Institute of Environmental Research

<u>Agenda</u>

- Brief status report on ASIA-AQ and partner country negotiations
- DC-8 Status
- Update on flight planning discussions for Korea
- Discussion and questions

Partner country negotiations

Ministry of Environment National Institute of Environmental Research

Thailand

- Responses to stakeholder questions provided on 2 June. Thanks for quick responses.
- Instrument details provided in the response is attached to the end of these slides.
- Next meeting will include NASA representatives and is tentatively scheduled for week of 10-14 July.

Malaysia

- Proposal presentation on 2 June at the Ministry of Natural Resources, Environment, and Climate Change went well.
- A number of questions were raised regarding security, but the proposal was provisionally accepted.
- Next meeting will include NASA representatives, date is TBD.

Philippines

- A draft agreement has been offered by the Philippine Department of Environment and Natural Resources (DENR).
- The agreement is modeled on our current ASIA-AQ agreement with Korea.
- The draft has been vetted by the departments of defense, foreign affairs, space, and various environmental offices.

ASIA-AQ Instruments – Awaiting PIFs

- **CHARON** CHemical Analysis of aeRosol ON-line (CHARON)
 - PI/Investigator(s): Armin Wisthaler & Tomas Mikoviny
- **PTR-MS** Proton Transfer Reaction Time of Flight Mass Spectrometer (PTRToF MS)
 - PI/Investigator(s): Armin Wisthaler & Tomas Mikoviny
- **CIT-CIMS** California Institute of Technology Chemical Ionization Mass Spectrometer
 - PI/Investigator(s): Paul Wennberg & John Crounse
- K-CIMS Korean EPD Chemical Ionization Mass Spectrometer
 - PI/Investigator(s): Joon-Young Ahn & Saewung Kim
- LGR-AAT Los Gatos Research Ammonia Analyzer Trace
 - PI/Investigator(s): Gangwoong Lee & Joon-Young Ahn
- **MMS** Meteorological Measurement System
 - PI/Investigator(s): Paul Bui & Rei Ueyama

🔥 ASIA-AQ Flight Planning - Google 🗙 🛛 🕂

 $\leftarrow \rightarrow C$ drive.google.com/drive/u/0/folders/1Bnl1T5g-0mTbrMVzJIQorbpCtXIWD69U

Rokjin-

🛆 Drive	Q Search in Drive	크는				
+ New	X 1 selected & J I I I C⊃ :				≂ ⊞ 0	P Rokj PM_
My Drive Computers	Name	Owner	Last modified $ eq$ \downarrow	File size		Detai
Shared with me	P Initial Flight Plant of King Air 350 in NIMS.pptx 🚢	e me	4:35 PM me	78 KB	:	GRIMS-CCM III 0 CRIMS Surfa
Starred	P MERRA2-PBLH-diurnal-Jan-2010to2023.pptx 🚢	e me	2:42 PM me	2.2 MB	:	
SpamTrash	12_videos_together.mp4 🚢	😮 me	10:48 AM me	117.5 MB	:	
➡ Storage	P GEOS-Chem PM2.5(Feb).pptx	e me	Jun 18, 2023 me	1.1 MB	:	Arress Disease
461.1 MB of 15 GB used	P BLH_JoongRangGu_2016_2019.pptx	e me	Jun 12, 2023 me	170 KB	:	Who has a
Get more storage	P Seoul_windroses_from_AWS.pptx #	e me	Jun 12, 2023 me	3.5 MB	:	Private to you
	Rokjin-PM_forecast_feb2019.pptx 🚢	e me	Jun 11, 2023 me	7.6 MB	≗+ ± / ☆ :	Manage
	Samuel_STILT_footprints_NIMS_Korea.pptx +	e me	Jun 11, 2023 me	257 KB	÷	
	🚥 asiaaq_MERRA2climatology.pdf 🚢	e me	Jun 11, 2023 me	812 KB	÷	File details
	HYSPLIT-backtraj-FEB 2023.pdf 🚢	e me	Jun 11, 2023 me	60 KB	÷	PowerPoint Size
	merra2-feb-climo_winds_korea.png 🕰	e me	Jun 11, 2023 me	256 KB	÷	7.6 MB
	P ASIA_AQ_GEMS_v1.pptx	e me	Jun 7, 2023 me	32.1 MB	:	7.6 MB

Materials useful for flight planning are being collected at the link below:

https://drive.google.com/drive/folders/1Bnl1T5g-0mTbrMVzJlQorbpCtXIWD69U?usp=sharing

PM_forecast_feb2019.pptx

 \bigcirc J)

Manage access

File details Туре

PowerPoint

Storage used 7.6 MB

Ρ

.....

Location

🗈 ASIA-AQ Flight Planning

12_videos_together.mp4

3 uploads complete ✓ X Initial Flight Plant of King Air 350 in NI...

Ρ MERRA2-PBLH-diurnal-Jan-2010to20...

4:36 PM

 \bigcirc

31

Ø

•

+

Х

Initial Flight Plan of King Air 350 in NIMS: Targeting observations of CH4 point source in Korea

- The Black circle represents the main point sources of CH4 in Korea derived from TROPIMI, such as Daesan, Gunsan, Yeosu, Busan, Pohang, and Daegu, where high-density energy industries are located.
- Therefore, It seem to be essential to see the methane (CH4) plumes using airborne imaging spectrometer (AVIRIS) data on the GIII aircraft over the regions where TROPOMI identified CH4 point sources, if possible
- Subsequently, the King Air 350 aircraft will collect samples of GHGs and other chemical compositions, including carbon stable isotope ratio from these point sources.

South Korea Map and Satellite Image

AirKorea Seoul daily average PM_{2.5} variability for Jan-Mar 2015-2020

Seasonal time series for each year on left

Cumulative probability statistics based on a running 10-day window

Probability	Max PM _{2.5}	PM _{2.5} range
10%	75 or greater	60 or greater
50%	48 or greater	35 or greater
90%	35 or greater	20 or greater

Documentation of ASIA-AQ airborne sensors

- This document provides instrument tables followed by a page for each sensor on the NASA DC-8, NASA GV, and NASA G-III aircraft.
- Slides provide information on the following: Measurement technique Team Members Compounds/variables measured Previous flight campaigns
- 17 of the instruments participated in the KORUS-AQ field study

ASIA-AQ DC-8 Instrument Payload and Investigators (Trace Gas Measurements)

Instrument Name/Technique	Parameters Measured	Investigator(s)	
Chemiluminescence	in situ O ₃ , NO, NO ₂	Ale Franchin and Frank Flocke (National Center for Atmospheric Research)	
IR Absorption Spectrometry	in situ CO, CH_4 , CO_2 , N_2O	Glenn Diskin and Joshua Digangi (NASA Langley)	
Diode Laser Hygrometer (DLH)	in situ water vapor	Glenn Diskin (NASA Langley)	
Laser Induced Fluorescence	in situ CH ₂ O	Glenn Wolfe and Tom Hanisco (NASA Goddard)	
Chemical Ionization Mass Spectrometer (CIMS)	<i>in situ</i> PANs, CINO ₂ , Cl ₂	Greg Huey (Georgia Institute of Technology)	
Chemical Ionization Mass Spectrometer (CIMS)	<i>in situ</i> SO ₂ , HONO, HO ₂ NO ₂ , organic acids, HCl	Joon-Young Ahn (National Institute for Environmental Research, Korea) and Saewung Kim (University of California, Irvine)	
Chemical Ionization Mass Spectrometer (CIMS)	<i>in situ</i> HNO ₃ , H ₂ O ₂ , organic peroxides, organic acids, etc.	Paul Wennberg and John Crounse (California Institute of Technology)	
Los Gatos Research Ammonia Analyzer	in situ NH ₃	Gangwoong Lee (Hankuk University of Foreign Studies, Korea)	
Open-Path Ammonia Laser Spectrometer (OPALS)	in situ NH ₃	Mark Zondlo (Princeton University)	
Ethane Tunable Infrared Laser Direct Absorption Spectroscopy (TILDAS)	in situ C ₂ H ₆	Dana Caulton (University of Wyoming)	
Whole Air Sampler	<i>in situ</i> C_2 - C_{11} alkanes, C_2 - C_{10} alkenes, C_6 - C_9 aromatics, C_1 - C_5 alkylnitrates, etc.	Donald Blake (University of California, Irvine)	
Trace Organic Gas Analyzer (TOGA)	in situ C ₃ -C ₁₀ hydrocarbons, C ₁ -C ₇ OVOCs, HCN, CH ₃ CN, C ₁ -C ₂ halocarbons, etc.	Eric Apel and Rebecca Hornbrook (National Center for Atmospheric Research)	
Cavity Enhanced Spectrometer for Atmospheric Research (CAESAR)	CHOCHO, NO ₂ , H ₂ O	Kyung-Eun Min (Gwangju Institute for Science and Technology, Korea)	
Proton Transfer Reaction-Time of Flight- Mass Spectrometer (PTR-ToF-MS)	<i>in situ</i> speciated nonmethane hydrocarbons and OVOCs	Armin Wisthaler and Tomas Mikoviny (University of Oslo)	

ASIA-AQ DC-8 Instrument Payload and Investigators (Aerosol measurements)

Instrument Name/Technique	Parameters Measured	Investigator(s)
Optical particle counters, nephelometers, soot photometer	<i>in situ</i> aerosol number, size distribution, optical and microphysical properties	Luke Ziemba and Richard Moore (NASA Langley)
Single Particle Soot Photometer (SP2) and nano-Scanning Mobility Particle Sizer (nano-SMPS)	<i>in situ</i> black carbon mass and aerosol number size distributions	Sae-Hee Lim (Chungnam National University, Korea)
Single Particle Soot Photometer (SP2)	in situ black carbon mass	Handol Lee (Inha University, Korea)
Cloud Condensation Nuclei (CCN) counter and Scanning Mobility Particle Sizer (SMPS)	<i>in situ</i> CCN number concentration and aerosol number size distributions	Seong-Soo Yum (Yonsei University, Korea)
High Resolution-Time of Flight-Aerosol Mass Spectrometer (HR-ToF-AMS)	size-resolved submicron aerosol chemical composition	Jose Jimenez and Pedro Campuzano-Jost (University of Colorado)
High Resolution-Time of Flight-Aerosol Mass Spectrometer (HR-ToF-AMS)	size-resolved submicron aerosol chemical composition	Taehyoung Lee (Hankuk University of Foreign Studies)
CHemical Analysis of aeRosol ON-line (CHARON) particle inlet coupled to PTR-MS	in situ speciated organic aerosol composition	Armin Wisthaler and Tomas Mikoviny (University of Oslo)
Bulk aerosol filter collection	soluble aerosol composition	Jack Dibb (University of New Hampshire)
Transmission Electron Microscopy (TEM) filter analysis	single particle chemical composition	Kouji Adachi (Meteorological Research Institute, Japan)

ASIA-AQ DC-8 Instrument Payload and Investigators (Meteorological measurements)

Instrument Name/Technique	Parameters Measured	Investigator(s)	
Charged-coupled device Actinic Flux Spectroradiometers (CAFS)	upwelling and downwelling actinic flux (4 π sr)	Sam Hall and Kirk Ullman (National Center for Atmospheric Research)	
Meteorological Measurement System (MMS)	3D winds	T. Paul Bui (NASA Ames)	

ASIA-AQ GV Instrument Payload and Investigators

Instrument Name/Technique	Parameters Measured	Investigator(s)
GCAS (GEO-CAPE Airborne Simulator)/UV Spectrometer	Trace gas column densities of NO ₂ and CH ₂ O	Laura Judd (NASA Langley) and Scott Janz (NASA Goddard)
HSRL/DIAL (High Spectral Resolution Lidar/Differential Absorption Lidar)	Vertically resolved profiles of aerosol backscatter, aerosol extinction, and ozone	John Hair (NASA Langley)

ASIA-AQ GIII Instrument Payload and Investigators

Instrument Name/Technique	Parameters Measured	Investigator(s)
High Altitude Lidar Observatory (HALO)	Vertically resolved profiles of water vapor and aerosols; methane column densities	Amin Nehrir (NASA Langley)
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)	Large point source emissions of CO ₂ and CH ₄	Charles Miller and Michael Eastwood (NASA JPL)

Chemiluminescence detection of NO, NO₂, and O₃

Team Members: Alessandro Franchin, NCAR Kirk Lesko, NCAR Frank Flocke, NCAR Andrew Weineimer, NCAR NCAR (National Center for Atmospheric Research)	<u>Measured compounds:</u> Nitric Oxide (NO) Nitrogen Dioxide (NO ₂) Ozone (O ₃)
Most recent flight campaigns (Year, Aircraft): ACCLIP (2022, GV) TI3GER (2022, GV) FIREX-AQ (2019, Twin Otter) WE-CAN (2018, C-130) KORUS-AQ (2016, DC-8)	

IR Absorption Spectrometry Trace Gas Suite

Team Members:

Glenn Diskin (PI), NASA LaRC Josh DiGangi (Co-I), NASA LaRC Yonghoon Choi (Scientist), AMA Mario Rana (Technician), AMA Dave Eckberg (Technician), NASA LaRC Johnny Mao (Technician), NASA LaRC

NASA LaRC (Langley Research Center) AMA (Analytical Mechanics Associates - NASA Contract)

Instrument	Species	Precision (1σ) (1 sec)	Accuracy
	CO	<1% or 1 ppbv	2%
DACOM	CH ₄	<0.1%	1%
	N ₂ O	<0.1%	1%
LICOR	CO ₂	0.05 ppmv	0.15 ppmv

Previous Field Campaigns:

- FIREX-AQ, KORUS-AQ, SEAC⁴RS, DISCOVER-AQ, DC3, ARCTAS, TC4, many others
- 20+ projects since the early 80's
- NASA DC-8 & NASA P-3B aircraft

Diode Laser Hygrometer (DLH)

Team Members:

Glenn Diskin (PI), NASA LaRC Josh DiGangi (Co-I), NASA LaRC Yonghoon Choi (Scientist), AMA Mario Rana (Technician), AMA Dave Eckberg (Technician), NASA LaRC Johnny Mao (Technician), NASA LaRC

NASA LaRC (Langley Research Center) AMA (Analytical Mechanics Associates - NASA Contract)

Max. Precision (1σ) Species Measurement Accuracy (1 sec)Rate 5% 0.1% $H_2O(v)$ or 0.05 ppmv or 0.5 ppmv Up to 100 Hz RHw,* < 1% 10-15% RHi

*Derived using project static pressure, temperature

Previous Field Campaigns:

- 9 different aircraft over last 2 decades
 - DC-8 FIREX-AQ, ATom, KORUS-AQ, ASCENDS, SEAC⁴RS, DC3, etc.
 - P-3B DISCOVER-AQ, CAMP2EX, IMPACTS
 - WB-57 MACPEX, POSIDON, ACCLIP, SABRE
 - Global Hawk ATTREX

Open-path laser absorption spectrometer

In Situ Airborne Formaldehyde (ISAF): Laser-Induced Fluorescence

ISAF Team

Name	Role	Institution
Glenn Wolfe	PI	NASA Goddard Space Flight Center
Thomas Hanisco	Co-PI	NASA Goddard Space Flight Center
Jason St. Claire	Scientist	University of Maryland, Baltimore County (UMBC)
Erin Delaria	Scientist	NASA Post-Doc
Jin Liao	Scientist	University of Maryland, Baltimore County (UMBC)
Reem Hannun	Scientist	University of Pittsburgh
Steven Smith	Technician	SciGlob
Abby Sebol	Student	University of Maryland

ISAF Measurements

ISAF measures in situ formaldehyde (HCHO). HCHO is a gas found throughout the lower atmosphere. It is a byproduct of the atmospheric degradation of hydrocarbons like methane. It is also directly emitted by combustion. Measurements of HCHO inform our understanding of 1) hydrocarbon emissions, 2) pollution-forming chemistry, and 3) airmass transport.

GEMS HCHO, March 2021, van Gent et al.*

*https://atmos2021.esa.int/iframe-agenda/files/Contribution 138 final extabs.pdf

ISAF Previous Flight Campaigns

Mission	Year	Platform	Science Focus
DC3	2012	NASA DC8	Continental convection
SENEX	2013	NOAA P3	Biosphere-urban interactions
SEAC4RS	2013	NASA DC8	Clouds, convection, chemistry
CONTRAST	2014	NCAR GV	Remote ocean convection
WINTER	2015	NCAR C130	Wintertime near-surface chemistry
SONGNEX	2015	NOAA P3	Oil and natural gas
ATom	2016 - 2018	NASA DC8	Global oxidation and composition
FIREX-AQ	2019	NASA DC8	Biomass burning
SARP	2021	NASA DC8	Student training
ACCLIP	2022	NASA WB57	Asian Monsoon outflow

ISAF installation for ACCLIP

ISAF Design

Dimensions: 17.5" x 15.5" x 24" Weight: 100 lb Power: 600 W Detection Limit: 50 pptv Sample Rate: 1 Hz

Georgia Tech-Chemical Ionization Mass Spectrometer (GT-CIMS)

			Peroxyacetyl Nitrate (PAN)	$CH_3C(O)OONO_2$
Greg	gory Huey	Principle Investigator (PI)	Peroxypropionyl Nitrate (PPN)	$C_2H_5C(O)OONO_2$
Dav	vid Tanner	Co-PI	Peroxybutyryl Nitrate (PBN)	$CH_3CH(CH_3)C(O)OONO_2,$ $CH_3CH_2CH_2C(O)OONO_2$
Linda	a Arterburn	Graduate Student	Peroxyacryloyl Nitrate (APAN)	CH ₂ =CHC(O)OONO ₂
Andre	ew Neuman	Consultant	Peroxybenzoyl Nitrate (PBzN)	C ₆ H ₅ C(O)OONO ₂
Jame	es Roberts	Co-Investigator	Nitryl Chloride	CINO ₂
			Molecular Chlorine	Cl_2
<u>Agency</u> NASA NSF	Airborne Field INTEX (2006) SEAC ⁴ RS (201 ATom (2016-2 ANTCI (2005) CONTRAST (ACCLIP (2022	<u>Campaigns</u> , ARCTAS (2008), DC3 (2012), 13), KORUS-AQ (2016), 018), FIREX-AQ (2019) , DC3 (2012), 2014), FRAPPE (2014), 2)		

Chemical Ionization Mass Spectrometer (CIMS)

PI : Joon-Young Ahn (NIER) Co-PI : Saewung Kim (UC, Irvine) **Team Members :** Seung-Myung Park (NIER) Kim Hyun Woong (NIER) Jae-Yun Lee (NIER) Byun Myounghwa (NIER) Cyril McCormick (UC, Irvine) Katherine Paredero (UC, Irvine) Jason Novelly (UC, Irvine)

NIER (National Institute of Environmental Research)

List of Field Campaigns

- KORUS-AQ (2016, NASA DC-8) later upgraded to include Time-of-Flight (ToF) detector
- Center for FRIEND Project (2022-2023) providing characteristics of high-concentration ultrafine dust generation through international measurement in Northeast Asia
- ASIA-AQ (2024, NASA DC-8) joint with UC, Irvine

In laboratory at NIER's Seoul Supersite

Caltech Chemical Ionization Mass Spectrometers (CIT-CIMS)

Team Members:

John Crounse (co-PI), Caltech Paul Wennberg (co-PI), Caltech Katherine Ball (co-I), Caltech Young Ro Lee (co-I), Caltech

Caltech (California Institute of Technology)

Previous Field Campaigns: AEROMMA (2023), DC-8 FIREX-AQ (2019), DC-8 Atom (2016-2019), DC-8 KORUS-AQ (2016), DC-8 SEAC⁴RS (2013), DC-8 DC3 (2012), DC-8 <u>Measured Compounds:</u> Acids $(HNO_3, HO_2NO_2, formic and acetic acids)$ VOC oxidation products (phenol, cresol, isoprene and other VOC oxidation products) Hydrogen peroxides (H_2O_2, CH_3OOH)

Los Gatos Research Ammonia Analyzer – Trace (LGR - AAT)

PI: Gangwoong Lee **Co-PI**: Joon-Young Ahn

Institution : Hankuk University of Foreign Studies/National Institute of Environmental Research (HUFS)/(NIER)

Team Members :

Jeonghwan Kim (Ph.D. student, HUFS) Jimin Lee (Master student, HUFS)

List of Field Campaigns measured by LGR-AAT

- Center for FRIEND Project (2021-2022), capacity building for airborne measurements of PM_{2.5} precursors
- ASIA-AQ (2024)

Instrument	Parameters	Precision	
	NUL	1σ; 0.1 s/ 1 s/ 10 s	
LGR-AAI	NП ₃	0.7 ppb/ 0.2 ppb/ 0.08 ppb	

Open-Path Ammonia Laser Spectrometer(OPALS)

PI: Mark Zondlo (Princeton University) Group Members: Nathan Li

Hongmin Yi Dan Moore James McSpiritt Vladislav Sevostianov Lars Wendt Yunseo Choi

Measuring ammonia (NH₃)

OPALS is a recently developed instrument flying for the first time on the DC-8 during AEROMMA (2023) **Open-path cell in the laboratory**

Ethane Tunable Infrared Laser Direct Absorption Spectroscopy (TILDAS)

Team members:

Dana Caulton (PI), University of Wyoming Victoria Wright (Grad Student)

- 1 Hz Ethane (C₂H₆) in ppb
- ~80 ppt precision

Previous flight campaigns:

- APART-lite 2019: University of Wyoming King Air, Colorado
- TRANS²Am 2021 + 2022: University of Wyoming King Air, Colorado

Whole Air Sampling (WAS) with gas chromatography analysis

Principal investigator:

Prof. Donald R. Blake University of California, Irvine (UCI)

Team members:

Barbara Barletta, Nicola Blake, Simone Meinardi, Isobel Simpson

List of measured species:

Volatile organic compounds (~100 VOCs):

- Hydrocarbons (ethane, benzene, etc.)
- Halocarbons (CFCs, HCFCs, HFCs, etc.)
- Alkyl nitrates (methyl nitrate, etc.)
- Sulfur compounds (OCS, DMS)

List of field campaigns (NASA DC-8):

ABLE-3A (1988), ABLE-3B (1990), PEM-West A (1991), TRACE-A (1992), PEM-West B (1994), PEM-Tropics A (1996), PEM-Tropics B (1999), TRACE-P (2001), INTEX-NA (2004), INTEX-B (2006), TC4 (2007), ARCTAS (2008), DC3 (2012), SEAC4RS (2013), KORUS-AQ (2016), ATom (2016-2018), FIREX-AQ (2019)

Exchanging WAS sampling canisters

WAS sampling aboard the NASA DC-8

TOGA-TOF: Trace Organic Gas Analyzer with Time-of-Flight Mass Spectrometer; continuous online fast GC/MS

Team: Eric Apel (PI), Alan Hills, Rebecca Hornbrook, Daun Jeong, Behrooz Roozitalab (NCAR/ACOM, Boulder, Colorado, USA)

TOGA-TOF (and earlier-generation TOGA) have been deployed on the following aircraft and missions:

- 1. NASA DC-8: FIREX-AQ (2019), ATom 1-4 (2016-2018)
- 2. NSF/NCAR Gulfstream V: ACCLIP (2022), TI3GER (2022) ORCAS (2016), CONTRAST (2014), DC3 (2012), TORERO (2012)
- **3. NSF/NCAR C-130:** WE-CAN (2018), WINTER (2015), FRAPPÉ (2014), NOMADSS (2013)

VOCs measured (at ppt to sub-ppt levels):

- **1.** Non-methane hydrocarbons (NMHC): C₃-C₁₀ alkanes, alkenes, aromatics
- **2.** Oxygenated VOCs: C₁-C₅ aldehydes, ketones, alcohols, esters, ethers, furans
- **3.** *Nitrogen-containing VOCs*: including C₁-C₄ nitriles, nitrates
- 4. Sulfur-containing VOCs: C₁-C₃, e.g., DMS, CS₂, CH₃SH
- Short- & Long-lived Halogenated VOCs: C₁-C₇ containing Br, I, Cl, & F atoms

Rebecca Daun Behrooz Alan Eric Hornbrook Jeong Roozitalab Hills Apel

NCAR

CAESAR-Blue(Cavity Enhanced Spectrometer for Atmospheric Research)

a.k.a. K-ACES(Korean-Airborne Cavity Enhanced Spectrometer) or ACES (Airborne Cavity Enhanced Spectrometer)

Potential Participating Team

by GIST ATMOS Lab

Gwangju Institute of Science and Technology Atmospheric Trace MOlecuel Sensing Lab.

Team members

- Prof. Kyung-Eun Min (PI)
- Woohui Nam (Ph.D. Student)
- Heejoo Kang (M.S. Student)

Measurement Targets

for sure

- Glyoxal (CHOCHO)
- Nitrogen Dioxide (NO₂)
- Water vapor (H₂O)

may also

- Methylglyoxal (CH₂COCHO)
- Formaldehyde (HCHO)
- Nitrous acid (HONO)

BVOCs

Biomass Burning... Burning...

aromatics, acetone, C₂H₂, C₂H₄, C₃H₆ glycolaldehyde, hydroxylacetone, ...

AVOCs

List of Missions Performed

- SENEX 2013 (NOAA WP-3D, Southeast US)
- UBWOS 2014 (Horsepool, UT, US)
- CARE-Beijing 2014 (Wangdu, China)
- SONGNEX 2015 (NOAA WP-3D, Western US)
- FIREX 2016 (Missoula, MT, US)
- KORUS-AQ 2016 (NOAA DC-8, Korea)

Proton Transfer Reaction, Time of Flight, Mass Spectrometer (PTR-ToF-MS)

Measurements of gas-phase organic compounds:

Benzene (C₆H₆) Isoprene (C₅H₈) Methanol (CH₃OH) Acetone (CH₃COCH₃) Etc. Toluene $(C_6H_5CH_3)$ Monoterpenes $(C_{10}H_{16})$ Acetaldehyde (CH_3CHO) Acetonitrile (CH_3CN)

- **FIREX-AQ** (DC8, 2019)
- **ND-MAX/ECLIF 2** (DC8, 2018)
- **NAAMES** (C-130, 2015-2018)
- **KORUS-AQ** (DC8, 2016)
- **SEAC⁴RS** (DC8, 2013)
- **DC3** (DC8, 2012)
- DISCOVER-AQ (P-3B, 2011-2014)
- ARCTAS (DC8, 2008)

Langley Aerosol Research Group (https://science-data.larc.nasa.gov/large/)

ARG

LARGE "Classic" Payload Targeting In Situ Aerosol Microphysical & Optical Properties:

- Community Aerosol Isokinetic Inlet
- Aerosol Number Concentration (CPCs with and w/o thermal-denuder at 350°C)
- Aerosol Size Distribution (SMPS, Optical Particle Sizer, Aerodynamic Particle Sizer)
- Aerosol Scattering Coefficient @ 450, 550, and 700 nm (Dry, 80%RH Nephelometers)
- Aerosol Absorption Coefficient @ 467, 530, and 660 nm (PSAP)
- Black Carbon Mass Concentration (SP2)
- Cloud Condensation Nuclei Concentration (CCN Counter)
- Wing Probes (coarse aerosol size distribution and cloud flag)

Numerous prior campaigns on multiple NASA aircraft: DC-8, P-3B, C-130, HU-25

Our ASIA-AQ Instrument Team:

e Caroly

Rich Moore Luke Eddie ASIA-AQ Ziemba Winstead Lead

Carolyn Jordan

Michael Shook

Francesca Gallo Claire Robinson

Single Particle Soot Photometer (SP2-D) & nano-Scanning Mobility Particle Sizer (nano-SMPS)

List of Field Campaigns measured by these instruments

• Both SP2 and nano-SMPS have been deployed at ground site measurements.

These type of instruments have been deployed on aircraft routinely by other groups

Single Particle Soot Photometer (SP2)

PI : Handol Lee Institution : Inha University Team Members : Minwoo Baek (Master student, Inha Univ.) Jaebeom Park (Master student, Inha Univ.)

Instrument	Measurement		
Single Particle	Black carbon mass concentration and		
Soot Photometer	coating thickness		
(SP2)	(~70 nm – 500 nm)		

List of Field Campaigns measured by SP2 in Aircraft

- GMAP-SIJAQ (GEMS Map of the Air Pollution Satellite Integrated Joint Monitoring of Air Quality) (National Institute of Environmental Research, 2021 - 2023)
- ASIA-AQ (The Airborne and Satellite Investigation of Asian Air Quality) (NASA & National Institute of Environmental Research, 2024)

<u>K-CCN</u>

<u>Condensation Particle Counter (CPC)</u> <u>Scanning Mobility Particle Sizer (SMPS)</u> <u>Cloud Condensation Nuclei Counter (CCNC)</u>

PI : Seong Soo Yum Institution : Yonsei University (YS) (http://cloud.yonsei.ac.kr) Team Members :

Minsu Park (Research Professor, YS) Pyosuk Seo (Ph.D. student, YS) Chanwoo Ahn (Ph.D. student, YS)

Instrument	Measured species
Condensation Particle Counter (CPC3010)	Condensation nuclei (CN) number concentration
Scanning Mobility Particle Sizer (SMPS3936, Electrostatic Classifiers 3080 + CPC3010)	Aerosol number size distribution
Cloud Condensation Nuclei Counter (CCN-100)	Cloud condensation nuclei (CCN) number concentration

CPC3010

SMPS3936+CPC3010

Aircraft / Field Campaign	Instruments
Beechcraft King Air (C90GT)	CPC3010, CCN-100
KORUS-AQ (NASA DC-8)	CPC3010, CCN-100
ASIA-AQ (NASA DC-8)	CPC3010, SMPS3936, CCN-100

High Resolution, Time of Flight, Aerosol Mass Spectrometer

Team members (CU-Boulder): Jose L. Jimenez (PI) Pedro Campuzano-Jost (co-I) Guy Symonds Dongwook Kim Doug Day Donna Sueper <u>Measurement Products</u> (reported up to 5Hz, PM_1 ($D_{50} \sim 1 \mu m$ geo. dia.)): Species: Organic Aerosol (OA) , Sulfate, Nitrate, Ammonium, NR-Chloride, MSA, Seasalt, Perchlorate, Bromine, Iodine

Bulk concentration, size distributions and volatility reported + detailed analysis of OA chemical properties (incl. source apportionment), organic nitrate, sulfate apportionment

Previous airborne campaigns:

NASA DC-8: ARCTAS (2008), DC3 (2012), SEAC⁴RS (2013), KORUS-AQ (2016), ATom (2016-2018), FIREX-AQ (2019)

NSF GV: DC3-test (2012), TI³GER (2022)

NSF-C130: MILAGRO (2006), INTEX-B (2006), WINTER (2015)

More details available at: https://espo.nasa.gov/firex-aq/instrument/HR-AMS

High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS)

I · Taehvoung Lee
1. Taenyoung Lee
nstitution : Hankuk University of Foreign Studies (HUFS)
(www.hufsaql.com)
eam Members :
Taehyun Park (Postdoctoral researcher, HUFS)
Seokwon Kang (Ph.D. student, HUFS)
Jihee Ban (Ph.D. student, HUFS)
Kyung Hoon Kim (Ph.D. student, HUFS)
Jeongin Song (Ph.D. student, HUFS)
Juhan Kim (Master student, HUFS)

leasurement List	Compounds
	Organics (OM)
	Inorganics (Cl ⁻ , NO ₃ ⁻ , SO ₄ ²⁻ , NH ₄ ⁺ , K ⁺)
PM _{1.0}	H:C, O:C, OM:OC, Oxidation state
	Organic Nitrogen (W-mode)
	Biomass Burning Markers (f_{60}, f_{73}), etc

List of Field Campaigns measured by HR-ToF-AMS in Aircraft

- MAPS-Seoul (The Megacity Air Pollution Seoul) (National Institute of Environmental Research, 2014 2015), King Air
- Korea United States Air Quality Study (KORUS-AQ) (NASA & National Institute of Environmental Research, 2016), DC-8
- GMAP-SIJAQ (GEMS Map of the Air Pollution Satellite Integrated Joint Monitoring of Air Quality) (National Institute of Environmental Research, 2021 2023), 1900D
- ASIA-AQ (The Airborne and Satellite Investigation of Asian Air Quality) (NASA & National Institute of Environmental Research, 2024), DC-8

Chemical Analysis of aeRosol ON-line (CHARON) PTR-ToF-MS

- Armin Wisthaler (Univ. of Oslo, Univ. of Innsbruck)
 Tomas Mikoviny (Univ. of Oslo)
 Felix Piel (Univ. of Oslo)
 Markus Müller (Ionicon Analytik)
 Tobias Reinecke (Ionicon Analytik)
 - Wojciech K. Wojnowski (Univ. of Oslo)

<u>Measurements of particle phase organic compounds:</u> Polycyclic Aromatic Hydrocarbons (PAHs) Levoglucosan C_xH_vO_z

Previous Flight Campaigns:

SARP (DC8, USA, 2018)

UNH SAGA Filter sampling of bulk aerosol for offline analysis

Jack Dibb University of New Hampshire Analytes of Interest: To be determined through discussion with in-country partner(s)

Previous Flight Campaigns:

FIREX-AQ (2019), Atom (2016-2018), KORUS-AQ (2016), WINTER (2015), SEAC⁴RS (2013), DC3 (2012), ARCTAS (2008), TC4 (2007), INTEX-B (2006), POLAR AVE (2005), INTEX NA (2004), DICE (2003), TRACE-P (2001), TOPSE (2000), PEM-TROPICS B (1999), SONEX (1996), PEM-TROPICS (1997), SUCCESS (1996), PEM-WEST B (1994), PEM-WEST A (1991)

Aerosol Sampler for Transmission Electron Microscopy (AS-TEM)

Kouji Adachi (Meteorological Research Institute, Japan) Measured parameters:

Particle compositions, mixing states, and shapes of individual aerosol particles such as sulfate, nonvolatile organic matter, salts, dust, soot, elemental components, etc.

Previous Field Campaigns:

- FIREX-AQ (NASA DC-8)
- IWC2022 (NASA DC-8)
- CPEX-CV (NASA DC-8)
- BBOP (DOE G1)

AS-TEM collects filter samples during flight for TEM analysis in the lab (offline measurements).

CAFS (Charged-Coupled Device Actinic Flux Spectroradiometer)

Measurement: hemispherically integrated downwelling and upwelling radiation

Samuel Hall, PI

Kirk Ullmann, Co-I

Additional team members:

- Steve Gabbard
- Steve Shertz
- Courtney Owen
- Kirk Lesko

National Center for Atmospheric Research Boulder, Colorado, USA

https://www2.acom.ucar.edu/sections/arim

Calculated photolysis	frequencies = $\int F(\lambda) \sigma(\lambda)$	$(T,p)\phi(\lambda,T,p)d\lambda$
<i>j</i> [O3->O2+O(1D)]	j [CH3COCH3->	<i>j</i> [BrO->Br+O]
<i>j</i> [NO2->NO+O(3P)]	CH3CO+CH3]	j [Br2O->products]
<i>j</i> [H2O2->2OH]	<i>j</i> [CH3OOH->CH3O+OH]	<i>j</i> [BrNO3->Br+NO3]
<i>j</i> [HNO2->OH+NO]	<i>j</i> [CH3ONO2->CH3O+NO2]	<i>j</i> [BrNO3->BrO+NO2]
<i>j</i> [HNO3->OH+NO2]	j [CH3COCH2CH3->	<i>j</i> [BrCl->Br+Cl]
<i>j</i> [CH2O->H+HCO]	Products]	<i>j</i> [HOBr->HO+Br]
<i>j</i> [CH2O->H2+CO]	j [CH3CH2CH2CHO->	<i>j</i> [BrONO2->Br+NO3]
j [CH3CHO->CH3+HCO]	C3H7+HCO]	<i>j</i> [BrONO2->BrO+NO2]
j [CH3CHO->CH4+CO]	j [CH3CH2CH2CHO->	j [Cl2+hv->Cl+Cl]
<i>j</i> [C2H5CHO->C2H5+HCO]	C2H4+CH2CHOH]	<i>j</i> [ClO->Cl+O]
j [CHOCHO->products]	<i>j</i> [HO2NO2>HO2+NO2]	j [ClONO2->Cl+NO3]
j [CHOCHO->HCO+HCO]	<i>j</i> [HO2NO2->OH+NO3]	j [CIONO2->CIO+NO2]
<i>j</i> [PAN->products]	<pre>j [CH3CH2ONO2-> Products]</pre>	<i>j</i> [CHBr3->Products]

j [CH3COCHO-> products] *j* [Br2->Br+Br]

Op

Optical inlets

... plus iodine species

Recent campaigns

MISSION	YEAR	LOCATION(S)	NASA AIRCRAFT
FIREX-AQ	2019	Boise, ID, Salina, KS	DC-8
KORUS-AQ	2016	Osan, S. Korea	DC-8
ATom	2016-18	Pacific, Atlantic	DC-8
SEAC4RS	2013	Houston, TX	DC-8
DC3	2012	Salina, KS	DC-8, GV
ARCTAS I	2008	Fairbanks, AK	DC-8
TC4	2007	San Jose, CR	DC-8,WB-57
CRAVE	2006	San Jose, CR	WB-57
AVE_Houston-05	2005	Houston, TX	WB-57
PAVE	2005	Pease, NH	DC-8
AVE_Houston-04	2004	Houston, TX	WB-57

Meteorological Measurement System (in situ 3D Winds)

T. Paul BuiNASA Ames Research CenterJ. Dean-DayBay Area Env. Res. InstituteRic KolyerNASA Ames Research CenterCecilia ChangBay Area Env. Res. InstituteRajesh PoudyalBay Area Env. Res. Institute

Primary Products 1-20 Hz	Accuracies	Precision
Static Pressure	± 0.3 mb	0.003 mb
Static Temperature	± 0.3 K	0.05 K
Horizontal Wind	± 1.0 ms ⁻¹	0.1 ms ⁻¹
Vertical Wind	± 0.3 ms ⁻¹	0.05 ms ⁻¹

Other Products:

potential temperature, true-air-speed, turbulence index, Reynolds number, GPS positions, velocities, accelerations, pitch, roll, heading, Angle-of-Attack, Angle-of-Sideslip, dynamic & total pressures, total temperatures.

2022-2023	SABRE	WB-5
2021-2022	ACCLIP	WB-57
2021-2022	DCOTSS	ER-2
2019	FIREX-AQ	DC-8
2018	HIWC	DC-8
2017-2018	ATOM	DC-8
2016	POSIDON	WB-57
2015	VIRGAS	WB-57
2011-2015	ATTREX	G.Hawk
2013-present	AJAX	AlphaJet

... others at: https://airbornescience.nasa.gov/mms

GEOCAPE Airborne Simulator (UV/Visible airborne spectrometer)

GCAS Team:

- PI: Scott Janz, NASA GSFC
- Jayne Boehmler, SSAI/NASA GSFC
- Sanxiong Xiong, SSAI NASA/GSFC
- Laura Judd, NASA LaRC
- Angelique Demetillo, NASA LaRC

Previous campaigns (aircraft)-year

- DISCOVER-AQ (B200)-2011-2014
- GOES-R Validation (ER2)-2017
- LISTOS (B200)-2018
- FIREX-AQ (ER2)-2019
- MOOSE (GIII)-2021
- TRACER-AQ (GV)-2021

GCAS measures high spectral and spatial resolution UV and Visible light. With this information, the primary products are below aircraft columns of nitrogen dioxide (NO2) and formaldehyde (HCHO)

https://doi.org/10.5194/amt-11-5941-2018 https://doi.org/10.5194/amt-13-6113-2020 https://doi.org/10.1117/12.2062058

Payload on GV in 2021

HSRL-2: High Spectral Resolution Lidar on the G-V for ASIA-AQ

Co-Pl's: Johnathan Hair / Taylor Shingler **Institute:** NASA Langley Research Center **Team Members:**

- Chris Hostetler (Research Scientist)
- Rich Ferrare (Research Scientist)
- Tony Notari (Optical Engineer)
- David Harper (Electrical Engineer)
- Marta Fenn (Data Analyst)
- Amy Jo Scarino (Data Analyst)
- Tony Cook (Optical Engineer)

Measurements:

- Vertical profiles of ozone concentration
- Surface weighted ozone (0-2 km)
- Particulate backscatter profiles (355, 532, 1064 nm)
- Aerosol extinction profiles (355 and 532 nm)
- Aerosol Optical Thickness (AOT) (355 and 532 nm)
- Particle depolarization profiles (355, 532, 1064 nm)
- Extinction-to-backscatter ratio profiles (355 and 532 nm)
- Aerosol Classification (type: smoke, dust, urban, marine)
- Mixed Layer Heights (MLH)

Ozone

• Cloud top height, cloud extinction

Campaigns:

- STAQS (2023) G-V
- ACTIVATE (2020-2022) King Air
- CALIPSO-NVF (2022) King Air
- TRACER-AQ (2021) G-V
- CAMP2EX (2019) P3
- ACEPOL (2017) ER-2
- ORACLES (2016-2018) ER-2, P3
- KORUS-AQ (2016)*
- DISCOVER-AQ (2012-2014) King Air
- TCAP (2012) King Air

HSRI 2/G-V 20210908 Raster = 1

* Predecessor instrument

High-Altitude Lidar Observatory (HALO) – Methane DIAL and HSRL

HALO Team

Amin Nehrir Rory Barton-Grimley Jim Collins Brian Collister Ewan Crosbie David Harper Anthony Notari

Instrument Head HALO Rack

NASA Langley Research Center

Recent Campaigns

Campaign	Year	HALO Configuration	Aircraft
Synergistic TEMPO Air Quality Science – Greenhouse Gasses (STAQS)	2023	CH₄/HSRL	G-III
Convective Processes Experiment – Cabo Verde (CPEX-CV)	2022	H ₂ O/HSRL	DC-8
Synergies of Active Optical and Active Microwave Remote Sensing Experiment (SOA ² RSE)	2022	H ₂ O/HSRL	P3
Convective Processes Experiment –Aerosols and Winds (CPEX-AW)	2021	H ₂ O/HSRL	DC-8
Atmospheric Carbon and Transport – America (ACT-America)	2019	CH₄/HSRL	C-130
ADM-Aeolus Cal/Val	2019	H ₂ O/HSRL	DC-8
Long Island Sound Tropospheric Ozone Study (LISTOS)	2018	CH₄/HSRL	B-200/UC-12

Parameter	Wavelength (nm)	Approximate Precision	Nominal G-III Horizontal Resolution	Nominal Vertical Resolution
Dry air column mole		~18 ppb	0.1 km	
fraction (XCH ₄)	1645	~10 ppb	0.2 km	N/A
		~4 ppb	2 km	
Aerosol Backscatter	532/1064	0.2 Mm ⁻¹ sr ⁻¹	2 km	15 m
Aerosol Extinction	532	10 Mm ⁻¹	12 km	300 m
Depolarization	532/1064	0.01	2 km	15 m
Aerosol Optical Depth	532	0.01	12 km	N/A
Aerosol Type (e.g., marine, dust, smoke)	N/A	Qualitative	12 km	300 m
Aerosol Mixing Layer Height (MLH)	N/A	100 m	2 km	N/A

Measurement Attributes

Preventing OIR&Gas Agriculture 106 106 106 108 10° 1

Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG)

AVIRIS-NG Team (NASA Jet Propulsion Laboratory)

Previous Flight Campaigns over North America,

Robert Green Charles Miller Andrew Thorpe Michael Eastwood David Thompson Philip Brodrick Ian McCubbin

Measurement Attributes

Imaging Spectroscopy: Earth System science Very high SNR, Calibration, Full VSWIR (380-2500 nm @ 5 nm) 34 degree Swath 1 to 7 m sampling Exceptional measurement quality for science (current state-of-the art)

https://avirisng.jpl.nasa.gov

Coastal Zones

Greenland, India, and Europe GHG / Aerosols

A DISCOUTO O

NIMS Aircraft Team

Name (Institution)	Name (Institution)	T	
Sangwon Joo (PI) (NIMS)	Heejung Yoo (NIMS)		
Sumin Kim (NIMS)	YoungSuk Oh (NIMS)		
Shanlan LI (NIMS)	Soojeong Lee (NIMS)		
Daegeun Shin (NIMS)	Jin-Kyu Hong (Yonsei Univ.)		
Samuel Takele Kenea(NIMS)	Doyoon Kwon (Yonsei Univ.)		
	Youngjoo Choi (Hankuk Univ. of		
	Foreign Studies)		,
Instrument/Technique		╈	

Portable air flask sampling system for Carbon isotope

Grimm/Sky-OPC

TSI/Integrating Nephelometer

DMT/Single Particle soot photometer (SP2)

Brechte/Tricolor absorption photometer (TAP)

Aventech /AIMMS-20

Dropsonde

M300 data collection

Measured Species/variables
In –situ CO2, CH4, CO
δ13C-CO2, δ13C-CH4 (Flask sampling will be analyzed)
Aerosol size distribution (32 channels over range of 0.25~32um)
Light-scattering coefficient of aerosols particles
Black carbon mass, number and sizes
Aerosol absorption coefficients
P, T, RH, U, V, W wind, GPS
Vertical profiles of P, T, RH, WS/WD

Nephelometer

<u>GEMS</u>

PI: Jhoon Kim (Yonsei Univ.)
Co-PI: J.H. Kim(PNU), H. Lee, K. Han, U.
Jeong (PKNU), R. Park (SNU), S. Park(UNIST),
Y. Choi(Ewha Univ.)

Team members (YSU) Y. Cho, H. Cha, M. Kim, J. Lee, Y. Chae

Field Campaigns the instrument has contributed

- GMAP/SIJAQ (by NIER)

List of measured Species/variables

- Trace gas total column density (NO₂, O₃, HCHO, CHOCHO, H₂O, SO₂, BrO, HONO ...)
- Aerosol Optical Depth, Single Scattering Albedo, Aerosol Effective Height
- Cloud Fraction, Height, and surface reflectance

GEOS Forecasts

PI: Patricia Castellanos (NASA GSFC)

Team: Arlindo da Silva (NASA GSFC), Allison Collow (UMBC), Huisheng Bian (UMBC), Carl Malings (MSU), Pamela Wales (MSU), Emma Knowland (MSU), Christoph Keller (MSU)

Field Campaigns the modeling team has contributed

- KORUS-AQ
- Atom
- ORACLES
- CAMP2Ex
- TRACER-AQ
- ACCLIP

GEOS-FP Meteorology & Aerosol Forecast

- 12 km resolution
- 10-day forecast
- 6-hourly meteorological analysis, 3-hourly aerosol analysis
- Assimilates AERONET, MODIS, & VIIRS 550 nm AOD

GEOS-CF Air Quality Forecast

- 25 km resolution
- 1-day hindcast and 5-day forecast
- Full atmospheric chemistry with GEOS-Chem chemical mechanism

MUSICA for ASIA-AQ: Urban to Global Modeling

Louisa Emmons, National Center for Atmospheric	 Will use multiple models: MUSICAv0: Multi-scale Infrastructure for Chemistry and
Research (NCAR), Boulder, Colorado	Aerosols – Global CAM-chem with regional refinement –
Benjamin Gaubert, Duseong Jo, Wenfu Tang, Rajesh Kumar, Gabriele Pfister, Rebecca Buchholz, Shawn Honomichl, David Edwards, Helen Worden (NCAR) Christine Wiedinmyer (Univ. Colorado) Christoph Knote (Univ. Augsburg, Germany)	 with comprehensive chemistry, assimilation of MOPITT CO WRF-Chem and WRF-Tracer (domain to be determined) – aerosols and ozone chemistry, tracers for source regions and types FLEXPART driven by WRF – Lagrangian plume transport Also guidance from real-time satellite products (MOPITT CO, TROPOML GEMS)

Past Flight Planning Support:

- FIREX-AQ (2019)
- KORUS-AQ (2016)
- FRAPPE/DISCOVER-AQ-Colo. (2014)
- SEAC4RS (2013)
- NOMADSS (2013)

Current global and US air quality forecasts with WACCM and WRF-Chem:

https://www2.acom.ucar.edu/acresp/forecasts-and-near-realtime-nrt-products

(left) MUSICAv0 model grid with 1/16-degree over Korea. Simulated black carbon concentrations using MUSICAv0 at (middle) standard 1-degree and (right) refined 1/16-degree (7 km) horizontal resolution during KORUS-AQ.

UCLA/NRL Weather and Air quality forecasting, nowcasting and

observational context

PI: Pablo Saide (UCLA) Co-PI: David Peterson (NRL) Co-I: Christopher Camacho (NRL), Postdoc: Manas Mohanty (UCLA), Theodore McHardy (NRL) PhD student: Julie Christopoulos (UCLA)	Weather Forecasting, Nowcasting, and Flight Planning Support using models, satellite and ground observations	January-March Pollution Transport Dry NE Monsoon Humid tropical transport Humid tropical transport MJO Influence transport Humid tropical tropical/sub-tropical distinct dry season Warm & Moist
Previous field campaign support		

r revious neia campaign support			
Campaign	Year	Sponsor	
SEAC4RS	2013	NASA	
KORUS-AQ	2016	NASA	
REThinC	2017, 2018	US Navy	
ORACLES	2016, 2017, 2018	NASA	
FIREX-AQ	2019	NASA/ NOAA	
DCOTSS	2021, 2022	NASA	
ACCLIP	2022	NASA/ US Navy	

Air quality forecasts, including experimental forecasts (WRF-Chem) and standardizing what's available from the community

SIA-AQ Meteorolog

Pressur	e Level	
.5	Dust	GI
)	Ammonium	5
5	NO2	
ite	OC	1
	BC	2
)	SO2	i –
salt	NO	ppbv

PM2

Nitra PM2

Sea

250

012 hr forecast valid Tue 00z 2019-08-06

UIOWA Air quality forecasting and analysis in support of ASIA-AQ

- **PI: Greg Carmichael (Ulowa)** Co-I: Jun Wang (Ulowa) **Collaborator: Gonzalo Ferrada (UTenn)** PhD students (Ulowa)
- Hyerim Kim
- **Chen Wang**

Past Flight Planning Support:

- FIREX-AQ (2019) ۲
- ORACLES (2016, 17, 18) ٠
- KORUS-AQ (2016)
- **SEAC4RS (2013)** ۲
- **ARCTAS (2008)** ۲
- **INTEX-B** (2006)
- **INTEX-NA (2004)** ۲
- **TRACE-P** (2001) ٠

(e) GEMS AEH 05:45

32.5

30.0

27.5 8

25.0 22.5 %

20.0 17.5

1 km measurement/model fused surface concentrations of PM2.5 in Seoul (Bottomleft) and Korea-wide NO2 (Bottom-right). **GEMS retrieved aerosol layer heights** (AEH) (Top-left).

atmospheric composition and emission source tracer forecasts to

support mission planning and

down emissions estimates in the premission phase and new aerosol

resolution pollutant distributions and

ASIA-AQ observations with available air quality monitoring data, satellite retrievals, and model predictions.

retrievals in near real time (e.g., plume heights) utilizing GEMS

source contributions for regions targeted in ASIA-AQ by integrating

execution:

observations;

