

Table 2.1 ACE Aerosol Science Traceability Matrix

		Geophysical		Mission	
Themes	Focused Science Questions	Parameters	Measurement Requirements	Requirements	
Sources, Processes, Transport, Sinks (SPTS)	 Q1. What are key sources, sinks, and transport paths of airborne sulfate, organic, BC, sea salt, and mineral dust aerosol? Q2. What is the impact of specific significant aerosol events such as volcanic eruptions, wild fires, dust outbreaks, urban/industrial pollution, etc. on local, regional, and global aerosol burden? 	$\begin{tabular}{ c c c c } \hline Column: & \end{tabular} & $	 High Spectral Resolution Lidar (HSRL) Backscatter (355, 532, 1064 nm) Extinction (355, 532 nm) Depolarization (two wavelengths of 355, 532, 1064 nm) Imaging Polarimeter Minimum 6 to 8 wavelengths spanning either UV or 410 nm to either 1630 nm 	Integrated satellite, modeling, and data assimilation approach is required to meet science objectives. Expand high- resolution global and regional modeling capabilities to	
Direct Aerosol Radiative Forcing (DARF)	 Q3. What is the direct aerosol radiative forcing (DARF) at the top-of-atmosphere, within atmosphere, and at the surface? Q4. What is the aerosol radiative heating of the atmosphere due to absorbing aerosols, and how will this heating affect cloud development and precipitation processes? 	• $\tau_{a,abs}(\lambda)$ • $m_a(\lambda)$ • $r_{eff a}(\lambda)$ • $v_{eff a}(\lambda)$ • Morphology Cloud Top: • $\frac{\tau_c}{-}$ • $\frac{\tau_{eff, c}}{-}$ • $\frac{v_{eff, c}}{-}$	 or 2250 nm Multiangle TBD, range ±50° Polarization accuracy 0.5% Combination polarized and nonpolarized channels Resolution: 250 m in at least one channel 	assimilate cloud and aerosol microphysical parameters such as number concentration and optical properties. Required ancillary data: • Land surface albedo map	
Cloud- Aerosol Interactions (CAI)	 Q5. How do aerosols affect cloud micro and macro physical properties and the subsequent radiative balance at the top, within, and bottom of the atmosphere? Q6. How does the aerosol influence on clouds and precipitation via nucleation depend on cloud updraft velocity and cloud type? Q7. How much does solar absorption by anthropogenic aerosol affect cloud radiative forcing and precipitation? Q8. What are the key mechanisms by which clouds process aerosols and influence the vertical profile of aerosol physical and optical properties? 	Vertically Resolved:Q5 06 Q7 Q8P1. NaP2. $\tau_{a,abs}(\lambda)$ P3. $r_{eff,a}$ P4. NcP5. LWCP6. PrecipCloud Top: Q5 Q6 Q7 Q8P7. Cloud top heightP8. Cloud albedoP9. LWPP10. τ_c P11. r_{effrc} P12. Cloud radiative effectCloud Base: Q5 06 Q7 Q8P13. Cloud base heightP14. Updraft velocity	Threshhold (i.e. minimum) HSRL: P1 P2 P3 P10 Imaging Polarimeter: P1 P2 P3 W band Radar: P4 P5 P7 P13 P14 Narrow swath High-Resolution VIS- MWIR Imager: P9,P11 Baseline (additions to threshold): W + Ka Band Doppler radar _P6 P14	 Ground network τ_a(λ), shortwave and longwave F_d and F_{net} Ground and airborne: column and vertically resolved τ_a(λ), τ_{a,abs}(λ), m_a(λ) (2 modes), morphology, P_{a,pol}(θ) Space measurements: Top of atmosphere shortwave and longwave F_u, collocated T(z), q(z), V(z), fire strength, frequency, location 	

Table 2.2 ACE Cloud Science Traceability Matrix

			Geophysical	,	Measurement	Mission
Themes	Focused Science Questions		Parameters		Requirements	Requirements
T1. Morphology Document occurrence, macroscale structure, and decadal scale changes of clouds and precipitation and their interaction with large-scale meteorological and thermodynamic forcing.	 Q1. Climate Sensitivity What is the sensitivity of the climate system to cloud structure and variability? T1 T2 T3 T4 What is the role of natural and anthropogenic aerosol in modulating cloud system occurrence and properties? T1 What microphysical processes dictate the lifecycle and coverage of clouds under various atmospheric conditions? T1 T2 What dictates the processes that cause and modulate 	GP2.	Hydrometeor Layer Detection Q1 Q2 Q3 Q4 Simultaneously occurring Cloud and Precipitation Thermodynamics Phase profile Q1 Q2 Q3 Q4 Simultaneously		Threshold Mission 2-Frequency (W- , Ka-bands), Scanning Doppler Radar (with radiometer channels) GP1 GP2 GP3 GP2 GP5 GP6 GP7 GP8 GP9 High Spectral Resolution Lidar	We define the threshold ACE Clouds Mission as those elements of this matrix that are in bold font . We suggest that boldface science objective and questions in columns 1 and 2 could ultimately be addressed by the measurements listed as the Threshold
T2. Microphysics Document the microphysical properties of liquid, ice, and mixed phase clouds and precipitation with a specific focus on high latitude snow and light liquid precipitation (less than 1 mm/hr)	precipitation in cloud systems? T3 Q2. Climate Forcing – Solar (T4) How will shortwave cloud forcing change as the climate warms? T1 T2 T3 T4 • Will the coupling between cloud occurrence and morphology with atmospheric motions and thermodynamic structure result in fundamental changes to the planetary albedo? T1 T2		occurring Cloud and precipitation microphysical properties profiles (Water Content, particle sieze, and number	TM3.	GP1 GP2 GP3 GP5 GP6 GP8 GP10 Narrow Swath Vis Imager (0.6 microns, 1.6 microns, 2.1 microns) GP2 GP3 GP5 GP6 GP8 GP10	Mission in the Measurement Requirements Column. Elements of this matrix in <i>italicized font</i> are defined as a <i>Baseline Mission</i> and
at all latitudes that influences cloud morphology and lifecycle and ultimately radiative balance. T3. Microphysical Processes Identify the occurrence of microphysical processes that cause changes to profiles of aerosol,	 What is the specific role of aerosol in modulating the properties of clouds and the planetary albedo under a changing climate? (T2, T3) Q3. Climate Forcing – Infrared (T4) How will longwave cloud forcing change as the climate warms? T1 T2 T3 T4 What is the coupling between thermodynamic 		concentration) Q1 Q2 Q3 Q4 Precipitation Rate Profile in light and heavy (> 5 mm/hr) precipitation Q1 Q2 Q3 Q4 Profiles of Cloud	BM1.	Baseline Mission 3-Frequency (W- , Ka-, Ku- bands), Scanning Doppler Radar (with radiometer channels) GP1 GP2 GP3 GP4	designate important science questions that require a more aggressive set of coordinated measurements that are listed in italicized font.
clouds, and precipitation properties. Concurrently quantify the process rates of important microphysical processes such as autoconversion and accretion in liquid and ice-phase stratiform and convective clouds.	 structure convective processes and the properties of convective anvils in modulating the coverage and properties of tropical anvil cirrus T1 T2 T3 What is the role of aerosol in changing the microphysical properties of tropical anvils and modulating their coverage, persistence, and feedbacks to the water cycle in the upper troposphere? T1 T2 T3 		Optical Depth, single scattering albedo, and asymmetry parameter Q1 Q2 Q3 Q4 Surface, TOA Cloud Radiative Effects		GPS GP6 GP7 GP8 GP9 (replaces TM1) High Spectral Res. Lidar (HSRL) GP1 GP2 GP3 GP5 GP6 GP8 GP10 (replaces TM2) High Resolution Narrow Swath	The set of baseline and threshold ACE clouds retrieval algorithms will be synergistic such that multiple measurements contribute to the retrieval of a geophysical
T4. Energetics Understand the maintenance of and changes to the energetic balance of the atmosphere and earth system due aerosol, clouds, and precipitation.	 Q4. Water Cycle and Energy Transport (T4) What is the role of cloud processes (specifically mixed phase) in snow and rain production in middle and high latitude cloud systems? T1 T2 T3 T4 What role does the seasonal cycle of middle latitude cloud radiative forcing play in the poleward transport of heat and how is this radiative forcing partitioned as function of cloud genre? T4 To what degree do various microphysical processes when coupled with large-scale dynamics modulate the precipitation production within middle and high latitude frontal systems? T2 T3 What is the role of convection versus large-scale dynamics in producing precipitation in the middle and high latitudes? T1 T3 	GP8. GP9.	Radiative Effects Q1 Q2 Q3 Q4 Latent Heating Profile in light and heavy (> 5 mm/hr) precipitation Q1 Q3 Q4 Radiative Heating Profile Q1 Q3 Q4 Cloud-Scale Vertical Motion Q1 Q4 Aerosol/CCN number concentration profile	BM4.	VNIR-SWIR Polarimeter GP6 GP8 GP10 (Replaces TM3) Narrow Swath High Freq. (183, 389 GHz) Microwave GP2 GP3 GP4 GP5 GP6 GP7 GP8	parameter. For instance while microwave brightness temperatures cannot generally be used to retrieve cloud microphysics, when passive microwave is combined with multi frequency Doppler radar, the microwave brightness temperatures provides an important constraint on the retrieval algorithm.

Ocean Ecosystems STM

Goddard Space Flight Center

		Abbroach Calence Outsion	Measurement	Instrument	Platform	Other
Category	Focused Questions*	Approach	Requirements	Requirements	Requir'ts	Needs
Ocean Biology	1 What are the standing stocks, composition, & productivity of ocean ecosystems? How and why are they changing? [OBB1]	Quantify phytoplankton biomass, pigments, optical properties, key groups (functional/HABS), and productivity using bio-optical models & chlorophyll fluorescence	Water-leaving radiances in near-ultraviolet, visible, & near-infrared for separation of absorbing & scattering constituents and calculation	 5 nm resolution 350 to 755 nm > 1000 - 1500 SNR for 15 nm aggregate bands UV & visible and 10 nm fluorescence bands (665, 678, 710, 748 nm centers) > 10 to 40 nm width atmospheric correction bands at 748, 765, 820, 865, 1245, 1640, 2135 nm 0.1% radiometric temporal stability 	Orbit permitting 2- day global coverage of	Global data sets from missions, models, or field observations:
	 How and why are ocean biogeochemical cycles changing? How do they Measure particulate and dissolved carbon pools, their characteristics and optical properties Measure particulate and dissolved carbon pools, their characteristics and optical properties Total radiances in UV, NIR, and SWIR for atmospheric 		radiometer measurements Sun-	Measurement Requirements (1) Ozone (2) Total water		
	influence the Earth system? [OBB2]	Quantify ocean photobiochemical 24 & photobiological processes	corrections Cloud radiances for	 (1 month demonstrated prelaunch) 58.3° cross track scanning Sensor tilt (±20°) for glint avoidance Polarization insensitive (<1.0%) 	synchronous orbit with crossing time between 10:30 a.m. & 1:30 p.m. Storage and download of full spectral and spatial data	 (4) Surface barometric pressure (5) NO₂ concentration (6) Vicarious calibration & validation ** (7) Full prelaunch characterization
	What are the material exchanges between land & ocean? How do they influence coastal ecosystems,	Estimate particle abundance, size 13 distribution (PSD), & characteristics 2	assessing instrument stray light	 1 km spatial resolution @ nadir No saturation in UV to NIR bands 5 year minimum design lifetime 		
	How are they changing? [OBB1,2,3]	Assimilate ACE observations in ocean biogeochemical model fields of key properties (cf., air-sea CO ₂ fluxes, export, pH, etc.)	High vertical resolution aerosol heights, optical thickness, & composition for atmospheric corrections	 0.5 km aerosol vertical resolution 2 m sub-surface resolution < 0.3% polarization misalignment 0.0001 km⁻¹sr⁻¹ aerosol backscatter sensitivity at 532 nm after averaging 		
	4 How do aerosols & clouds influence ocean ecosystems & biogeochemical cycles? How do ocean biological &	Compare ACE observations with ground-based and model data of biological properties, land-ocean 4	Subsurface particle scattering & depth profile	 < 4 ns e-folding transient response Brillouin scattering capability; Receiver FOVs: 0-60 m; 0-120 m. 	Monthly lunar calibration at 7°	
	photochemical processes affect the atmosphere and Earth system? [OBB2]	exchange in the coastal zone, physical properties (e.g., winds, SST, SSH, etc), and circulation (ML dynamics, horizontal divergence, etc)	Broad spatial coverage aerosol heights and single scatter albedo for atmospheric correction.	• Observation angles: 60° to 140° • Angle resolution: 5° • Degree of polarization: 1%	phase angle through Earth observing port	radiometric) Science Requirements
	How do physical ocean processes affect ocean ecosystems &	Combine ACE ocean & atmosphere observations with models to evaluate (1) air-sea exchange of particulates,	Subsurface polarized return for typing oceanic particles		(2) \$	(1) SST (2) SSH (3) PAR
	biogeochemistry? How do ocean biological processes influence ocean physics? [OBB1,2]	(1) arr-sea exchange of particulates, dissolved materials, and gases and (2) impacts on aerosol & cloud properties	Supporting Field • Primary production (NPP) • Inherent optical properties laboratory & field (coastal a		(4) UV (5) MLD (6) CO ₂ (7) pH (8) Ocean circulation (9) Aerosol	
	What is the distribution of algal blooms and their	Assess ocean radiant heating and feedbacks 5	Measure key phytoplankton Expanded global data sets of fluorescence, vertical organ			
	relation to harmful algal and eutrophication events? How are these events changing? [OBB1,4]	Conduct field sea-truth1measurements and modeling to2validate retrievals from the pelagic3to near-shore environments3	Ocean Biogeoch • Expand model capabilities phytoplankton species/fun • Improve model process par		deposition (10) run-off loading in coastal zone	

* ACE focused questions are traceable to the four overarching science questions of NASA's Ocean Biology and Biogeochemistry Program [OBB1 to OBB4] as defined in the document: Earth's Living Ocean: A Strategic Vision for the NASA Ocean Biological and Biogeochemistry Program

** Specific vicarious calibration & validation requirements are defined in the ACE Ocean Ecosystem requirements document developed as part of ACE pre-formulation activities

Aerosol-Ocean STM

Goddard Space Flight Center

Category	Focused Questions	Waps to Science Question	Measurement Requirements	Instrument Requirements	Platform Requir'ts	Other Needs
Aerosol -Ocean Inter- action	1 What is the flux of aerosols to the ocean and their temporal and spatial distribution	 Identify microphysical and optical properties of aerosols, partition natural and anthropogenic sources, and characterize spectral complex index of refraction and particle size distribution 	Satellite • Radiances & polarization at selected UV, visible and SWIR bands for aerosol types (dust, smoke, etc.), complex index of refraction, effective height, optical thickness, and size distribution with 2-day global coverage to resolve temporal evolution of plumes • Active (lidar) measurements of aerosol properties along orbit track to refine height distribution and composition • Drizzle detection and precipitation rates coincident with lidar & polarimeter data • Global phytoplankton pigment absorption, dissolved organics absorption, total & phytoplankton carbon concentration, ocean particle size distribution, phytoplankton fluorescence, Chl:C, and growth rate • Particle scattering & vertical distribution through active (lidar) subsurface returns	Radiances & polarization at selected UV, visible and SWIR bands for aerosol types (dust, smoke, etc.), complex index of refraction, effective height, optical thickness, and size	coverage for	Supporting Global data • Humidity profiles • Precipitation
	2 What are the physical and chemical characteristics, sources, and strengths of aerosols deposited into the oceans?	2) Characterize dust aerosols, their column mass, iron content and other trace elements, and their regional-to-global scale transport and flux from events to the annual cycle		 requirements as stated in aerosol STM Lidar 	radiometer & polarimeter measurements Sun-	 Formaldehyde Glyoxal IO BrO NO₂
	 3 How are the physical and chemical characteristics of deposited aerosols transformed in the atmosphere? 4 How do ocean ecosystems respond to aerosol deposition? 5 What is the spatial and temporal distribution of aerosols and gases emitted from the ocean and how are these fluxes regulated by ocean ecosystems? 6 What are the feedbacks among ocean emissions of aerosols and gases, microphysical and radiative properties of the overlying aerosols and clouds, aerosol deposition, ocean ecosystems and the Earth's climate, and how is humankind changing these feedbacks? 	3) Conduct appropriate field observations to validate satellite retrievals of aerosols and ocean ecosystem features		in ocean STM orb Duel frequency Doppler radar • requirements as stated in cloud STM Sto	synchronous orbit with crossing time between 10:30	• SO ₂ Other Data
		4) Use ACE space and field observations to constrain models to evaluate (1) aerosol chemical transformations and long range transport, (2) air-to-sea and sea-to-air exchange and (3) impacts on ocean biology			Storage and download of	•Ground-based aerosol observational network
		5) Characterize aerosol chemical composition and transformation during transport (including influences of vertically distributed NO ₂ , SO ₂ , formaldehyde, glyoxal, IO, BrO) and partition gas-derived and mechanically-derived contributions to total aerosol column	Supporting Field & Laboratory Measu • Dust chemical properties/solubility/ chemical trans • Aerosol optical properties, heights, chemical comp partitioning of gas-derived and mechanically-derived total column load • DMS flux and dissolved concentration and precurs • Atmospheric boundary layer trace gases, NO ₂ / SO	sformation position, and d contributions to pors	full spectral and spatial data Monthly lunar calibration at 7° phase angle through Earth observing port	nar 1t 7° th
		 6) Monitor global phytoplankton biomass, pigments, taxonomic groups, productivity, Chl:C, and fluorescence; measure and distinguish ocean particle pools and colored dissolved organic material; quantify aerosolrelevant surface ocean photobiological and photobiochemical processes 	Surface layer plankton species, phytoplankton carbon, fluorescence Additiona • observational network representative of global range in properties Process/mechanism oriented field and laboratory studies • sustain time series field measurements of key properties over active lifetime of mission Modeling		Additional	r,
		7) Relate changes in ocean biology/emissions3to aerosol deposition patterns and events5	 Conduct model tracer studies to determine sources chemical attributes of aerosols Model height distribution of NO₂ & SO₂ and dust of NO₂ & SO₂ & SO₂	and Cloud STMs		
		8) Demonstrate influences of ocean taxonomy, physiological stress, and photochemistry on cloud/aerosol properties, including organic aerosol transfer 3	 Use satellite data to constrain model aerosol source Model air-sea exchange rates and temporal variabit sources of aerosols to atmosphere Run coupled ocean biogeochemistry model to asse compare to observed response of ocean ecosystems 			